首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, objective Bayesian method is applied to analyze degradation model based on the inverse Gaussian process. Noninformative priors (Jefferys prior and two reference priors) for model parameters are obtained and their properties are discussed. Moreover, we propose a class of modified reference priors to remedy weaknesses of the usual reference priors and show that the modified reference priors not only have proper posterior distributions but also have probability matching properties for model parameters. Gibbs sampling algorithms for Bayesian inference based on the Jefferys prior and the modified reference priors are studied. Simulations are conducted to compare the objective Bayesian estimates with the maximum likelihood estimates and subjective Bayesian estimates and shows better performance of the objective method than the other two estimates especially for the case of small sample size. Finally, two real data examples are analyzed for illustration.  相似文献   

2.
Functional magnetic resonance imaging (fMRI) is the most popular technique in human brain mapping, with statistical parametric mapping (SPM) as a classical benchmark tool for detecting brain activity. Smith and Fahrmeir (J Am Stat Assoc 102(478):417–431, 2007) proposed a competing method based on a spatial Bayesian variable selection in voxelwise linear regressions, with an Ising prior for latent activation indicators. In this article, we alternatively link activation probabilities to two types of latent Gaussian Markov random fields (GMRFs) via a probit model. Statistical inference in resulting high-dimensional hierarchical models is based on Markov chain Monte Carlo approaches, providing posterior estimates of activation probabilities and enhancing formation of activation clusters. Three algorithms are proposed depending on GMRF type and update scheme. An application to an active acoustic oddball experiment and a simulation study show a substantial increase in sensitivity compared to existing fMRI activation detection methods like classical SPM and the Ising model.  相似文献   

3.
In this paper, the objective Bayesian method is applied to investigate the competing risks model involving both catastrophic and degradation failures. By modeling soft failure as the Wiener degradation process, and hard failures as a Weibull distribution, we obtain the noninformative priors (Jefferys prior and two reference priors) for the parameters. Moreover, we show that their posterior distributions have good properties and we propose Gibbs sampling algorithms for the Bayesian inference based on the Jefferys prior and two reference priors. Some simulation studies are conducted to illustrate the superiority of objective Bayesian method. Finally, we apply our methods to two real data examples and compare the objective Bayesian estimates with the other estimates.  相似文献   

4.
Gaussian geostatistical models (GGMs) and Gaussian Markov random fields (GMRFs) are two distinct approaches commonly used in spatial models for modeling point-referenced and areal data, respectively. In this paper, the relations between GGMs and GMRFs are explored based on approximations of GMRFs by GGMs, and approximations of GGMs by GMRFs. Two new metrics of approximation are proposed : (i) the Kullback-Leibler discrepancy of spectral densities and (ii) the chi-squared distance between spectral densities. The distances between the spectral density functions of GGMs and GMRFs measured by these metrics are minimized to obtain the approximations of GGMs and GMRFs. The proposed methodologies are validated through several empirical studies. We compare the performance of our approach to other methods based on covariance functions, in terms of the average mean squared prediction error and also the computational time. A spatial analysis of a dataset on PM2.5 collected in California is presented to illustrate the proposed method.  相似文献   

5.
Conditional autoregressive (CAR) models have been extensively used for the analysis of spatial data in diverse areas, such as demography, economy, epidemiology and geography, as models for both latent and observed variables. In the latter case, the most common inferential method has been maximum likelihood, and the Bayesian approach has not been used much. This work proposes default (automatic) Bayesian analyses of CAR models. Two versions of Jeffreys prior, the independence Jeffreys and Jeffreys-rule priors, are derived for the parameters of CAR models and properties of the priors and resulting posterior distributions are obtained. The two priors and their respective posteriors are compared based on simulated data. Also, frequentist properties of inferences based on maximum likelihood are compared with those based on the Jeffreys priors and the uniform prior. Finally, the proposed Bayesian analysis is illustrated by fitting a CAR model to a phosphate dataset from an archaeological region.  相似文献   

6.
Adaptive smoothing has been proposed for curve-fitting problems where the underlying function is spatially inhomogeneous. Two Bayesian adaptive smoothing models, Bayesian adaptive smoothing splines on a lattice and Bayesian adaptive P-splines, are studied in this paper. Estimation is fully Bayesian and carried out by efficient Gibbs sampling. Choice of prior is critical in any Bayesian non-parametric regression method. We use objective priors on the first level parameters where feasible, specifically independent Jeffreys priors (right Haar priors) on the implied base linear model and error variance, and we derive sufficient conditions on higher level components to ensure that the posterior is proper. Through simulation, we demonstrate that the common practice of approximating improper priors by proper but diffuse priors may lead to invalid inference, and we show how appropriate choices of proper but only weakly informative priors yields satisfactory inference.  相似文献   

7.
We apply Bayesian approach, through noninformative priors, to analyze a Random Coefficient Regression (RCR) model. The Fisher information matrix, the Jeffreys prior and reference priors are derived for this model. Then, we prove that the corresponding posteriors are proper when the number of full rank design matrices are greater than or equal to twice the number of regression coefficient parameters plus 1 and that the posterior means for all parameters exist if one more additional full rank design matrix is available. A hybrid Markov chain sampling scheme is developed for computing the Bayesian estimators for parameters of interest. A small-scale simulation study is conducted for comparing the performance of different noninformative priors. A real data example is also provided and the data are analyzed by a non-Bayesian method as well as Bayesian methods with noninformative priors.  相似文献   

8.
This work presents a Bayesian semiparametric approach for dealing with regression models where the covariate is measured with error. Given that (1) the error normality assumption is very restrictive, and (2) assuming a specific elliptical distribution for errors (Student-t for example), may be somewhat presumptuous; there is need for more flexible methods, in terms of assuming only symmetry of errors (admitting unknown kurtosis). In this sense, the main advantage of this extended Bayesian approach is the possibility of considering generalizations of the elliptical family of models by using Dirichlet process priors in dependent and independent situations. Conditional posterior distributions are implemented, allowing the use of Markov Chain Monte Carlo (MCMC), to generate the posterior distributions. An interesting result shown is that the Dirichlet process prior is not updated in the case of the dependent elliptical model. Furthermore, an analysis of a real data set is reported to illustrate the usefulness of our approach, in dealing with outliers. Finally, semiparametric proposed models and parametric normal model are compared, graphically with the posterior distribution density of the coefficients.  相似文献   

9.
This paper considers interpolation on a lattice of covariance-based Gaussian Random Field models (Geostatistics models) using Gaussian Markov Random Fields (GMRFs) (conditional autoregression models). Two methods for estimating the GMRF parameters are considered. One generalises maximum likelihood for complete data, and the other ensures a better correspondence between fitted and theoretical correlations for higher lags. The methods can be used both for spatial and spatio-temporal data. Some different cross-validation methods for model choice are compared. The predictive ability of the GMRF is demonstrated by a simulation study, and an example using a real image is considered.  相似文献   

10.
Chain event graphs are graphical models that while retaining most of the structural advantages of Bayesian networks for model interrogation, propagation and learning, more naturally encode asymmetric state spaces and the order in which events happen than Bayesian networks do. In addition, the class of models that can be represented by chain event graphs for a finite set of discrete variables is a strict superset of the class that can be described by Bayesian networks. In this paper we demonstrate how with complete sampling, conjugate closed form model selection based on product Dirichlet priors is possible, and prove that suitable homogeneity assumptions characterise the product Dirichlet prior on this class of models. We demonstrate our techniques using two educational examples.  相似文献   

11.
This paper deals with the Bayesian inference for the parameters of the Birnbaum–Saunders distribution. We adopt the inverse-gamma priors for the shape and scale parameters because the continuous conjugate joint prior distribution does not exist and the reference prior (or independent Jeffreys’ prior) results in an improper posterior distribution. We propose an efficient sampling algorithm via the generalized ratio-of-uniforms method to compute the Bayesian estimates and the credible intervals. One appealing advantage of the proposed procedure over other sampling techniques is that it efficiently generates independent samples from the required posterior distribution. Simulation studies are conducted to investigate the behavior of the proposed method, and two real-data applications are analyzed for illustrative purposes.  相似文献   

12.
We consider Bayesian shrinkage predictions for the Normal regression problem under the frequentist Kullback-Leibler risk function.Firstly, we consider the multivariate Normal model with an unknown mean and a known covariance. While the unknown mean is fixed, the covariance of future samples can be different from that of training samples. We show that the Bayesian predictive distribution based on the uniform prior is dominated by that based on a class of priors if the prior distributions for the covariance and future covariance matrices are rotation invariant.Then, we consider a class of priors for the mean parameters depending on the future covariance matrix. With such a prior, we can construct a Bayesian predictive distribution dominating that based on the uniform prior.Lastly, applying this result to the prediction of response variables in the Normal linear regression model, we show that there exists a Bayesian predictive distribution dominating that based on the uniform prior. Minimaxity of these Bayesian predictions follows from these results.  相似文献   

13.
It is well known that spline smoothing estimator relates to the Bayesian estimate under partially informative normal prior.In this paper,we derive the conditions for the propriety of the posterior in the nonparametric mixed efects model under this class of partially informative normal prior for fxed efect with inverse gamma priors on the variance components and hierarchical priors for covariance matrix of random efect,then we explore the Gibbs sampling procedure.  相似文献   

14.
In the model of sequential order statistics, prior distributions are considered for the model parameters, which, for example, describe increasing load put on remaining components. Gamma priors are examined as well as priors out of a class of extended truncated Erlang distributions (ETED), which is introduced along with some properties. The choice of independent priors in both set-ups leads to respective independent, conjugate posterior distributions for the model parameters of sequential order statistics. Since, in practical applications, the model parameters will often be increasingly ordered, a multivariate prior is applied being the joint distribution of common ETED-order statistics. Whatever baseline distribution of the sequential order statistics is chosen, the joint posterior distribution turns out to be a Weinman multivariate exponential distribution. Posterior moments are given explicitly, and HPD credible sets for the model parameters are stated.  相似文献   

15.
In many reliability analyses, the probability of obtaining a defective unit in a production process should not be considered constant even though the process is stable and in control. Engineering experience or previous data of similar or related products may often be used in the proper selection of a prior model to describe the random fluctuations in the fraction defective. A generalized beta family of priors, several maximum entropy priors and other prior models are considered for this purpose. In order to determine the acceptability of a product based on the lifelengths of some test units, failure-censored reliability sampling plans for location-scale distributions using average producer and consumer risks are designed. Our procedure allows the practitioners to incorporate a restricted parameter space into the reliability analysis, and it is reasonably insensitive to small disturbances in the prior information. Impartial priors are used to reflect prior neutrality between the producer and the consumer when a consensus on the elicited prior model is required. Nonetheless, our approach also enables the producer and the consumer to assume their own prior distributions. The use of substantial prior information can, in many cases, significantly reduce the amount of testing required. However, the main advantage of utilizing a prior model for the fraction defective is not necessarily reduced sample size but improved assessment of the true sampling risks. An example involving shifted exponential lifetimes is considered to illustrate the results.  相似文献   

16.
The article is concerned with the use of Markov chain Monte Carlo methods for posterior sampling in Bayesian nonparametric mixture models.In particular, we consider the problem of slice sampling mixture models for a large class of mixing measures generalizing the celebrated Dirichlet process. Such a class of measures, known in the literature as σ-stable Poisson-Kingman models, includes as special cases most of the discrete priors currently known in Bayesian nonparametrics, for example, the two-parameter Poisson-Dirichlet process and the normalized generalized Gamma process. The proposed approach is illustrated on some simulated data examples. This article has online supplementary material.  相似文献   

17.
Objective priors, especially reference priors, have been studied extensively for spatial data in the last decade. In this paper, we study objective priors for a CAR model. In particular, the properties of the reference prior and the corresponding posterior are studied. Furthermore, we show that the frequentist coverage probabilities of posterior credible intervals depend only on the spatial dependence parameter $\rho $ , and not on the regression coefficient or the error variance. Based on the simulation study for comparing the reference and Jeffreys priors, the performance of two reference priors is similar and better than the Jeffreys priors. One spatial dataset is used for illustration.  相似文献   

18.
Generalized linear mixed models (GLMMs) have been applied widely in the analysis of longitudinal data. This model confers two important advantages, namely, the flexibility to include random effects and the ability to make inference about complex covariances. In practice, however, the inference of variance components can be a difficult task due to the complexity of the model itself and the dimensionality of the covariance matrix of random effects. Here we first discuss for GLMMs the relation between Bayesian posterior estimates and penalized quasi-likelihood (PQL) estimates, based on the generalization of Harville’s result for general linear models. Next, we perform fully Bayesian analyses for the random covariance matrix using three different reference priors, two with Jeffreys’ priors derived from approximate likelihoods and one with the approximate uniform shrinkage prior. Computations are carried out via the combination of asymptotic approximations and Markov chain Monte Carlo methods. Under the criterion of the squared Euclidean norm, we compare the performances of Bayesian estimates of variance components with that of PQL estimates when the responses are non-normal, and with that of the restricted maximum likelihood (REML) estimates when data are assumed normal. Three applications and simulations of binary, normal, and count responses with multiple random effects and of small sample sizes are illustrated. The analyses examine the differences in estimation performance when the covariance structure is complex, and demonstrate the equivalence between PQL and the posterior modes when the former can be derived. The results also show that the Bayesian approach, particularly under the approximate Jeffreys’ priors, outperforms other procedures.  相似文献   

19.
Bayesian model determination in the complete class of graphical models is considered using a decision theoretic framework within the regular exponential family. The complete class contains both decomposable and non-decomposable graphical models. A utility measure based on a logarithmic score function is introduced under reference priors for the model parameters. The logarithmic utility of a model is decomposed into predictive performance and relative complexity. Axioms of decision theory lead to the judgement of the plausibility of a model in terms of the posterior expected utility. This quantity has an analytic expression for decomposable models when certain reference priors are used and the exponential family is closed under marginalization. For non-decomposable models, a simulation consistent estimate of the expectation can be obtained. Both real and simulated data sets are used to illustrate the introduced methodology.  相似文献   

20.
Simultaneous prediction and parameter inference for the independent Poisson observables model are considered. A class of proper prior distributions for Poisson means is introduced. Bayesian predictive densities and estimators based on priors in the introduced class dominate the Bayesian predictive density and estimator based on the Jeffreys prior under Kullback-Leibler loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号