首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
许艳 《中国科学:数学》2014,44(4):409-422
本文利用渐近于Gauss函数的函数类?,给出渐近于Hermite正交多项式的一类Appell多项式的构造方法,使得该序列与?的n阶导数之间构成了一组双正交系统.利用此结果,本文得到多种正交多项式和组合多项式的渐近性质.特别地,由N阶B样条所生成的Appell多项式序列恰为N阶Bernoulli多项式.从而,Bernoulli多项式与B样条的导函数之间构成了一组双正交系统,且标准化之后的Bernoulli多项式的渐近形式为Hermite多项式.由二项分布所生成的Appell序列为Euler多项式,从而,Euler多项式与二项分布的导函数之间构成一组双正交系统,且标准化之后的Euler多项式渐近于Hermite多项式.本文给出Appell序列的生成函数满足的尺度方程的充要条件,给出渐近于Hermite多项式的函数列的判定定理.应用该定理,验证广义Buchholz多项式、广义Laguerre多项式和广义Ultraspherical(Gegenbauer)多项式渐近于Hermite多项式的性质,从而验证超几何多项式的Askey格式的成立.  相似文献   

2.
We are dealing with the concept of d-dimensional orthogonal (abbreviated d-orthogonal) polynomials, that is to say polynomials verifying one standard recurrence relation of order d + 1. Among the d-orthogonal polynomials one singles out the natural generalizations of certain classical orthogonal polynomials. In particular, we are concerned, in the present paper, with the solution of the following problem (P): Find all polynomial sequences which are at the same time Appell polynomials and d-orthogonal. The resulting polynomials are a natural extension of the Hermite polynomials.

A sequence of these polynomials is obtained. All the elements of its (d + 1)-order recurrence are explicitly determined. A generating function, a (d + 1)-order differential equation satisfied by each polynomial and a characterization of this sequence through a vectorial functional equation are also given. Among such polynomials one singles out the d-symmetrical ones (Definition 1.7) which are the d-orthogonal polynomials analogous to the Hermite classical ones. When d = 1 (ordinary orthogonality), we meet again the classical orthogonal polynomials of Hermite.  相似文献   


3.
In this paper we study Grothendieck polynomials indexed by Grassmannian permutations, which are representatives for the classes corresponding to the structure sheaves of Schubert varieties in the K-theory of Grassmannians. These Grothendieck polynomials are nonhomogeneous symmetric polynomials whose lowest homogeneous component is a Schur polynomial. Our treatment, which is closely related to the theory of Schur functions, gives new information about these polynomials. Our main results are concerned with the transition matrices between Grothendieck polynomials indexed by Grassmannian permutations and Schur polynomials on the one hand and a Pieri formula for these Grothendieck polynomials on the other.  相似文献   

4.
In this paper, we present a multivariable extension of the Humbert polynomials, which is motivated by the Chan-Chyan-Srivastava multivariable polynomials, the multivariable extension of the familiar Lagrange-Hermite polynomials and Erkus-Srivastava multivariable polynomials. We derive various families of multilinear and mixed multilateral generating functions for these polynomials. Other miscellaneous properties of these multivariable polynomials are also discussed. Some special cases of the results presented in this study are also indicated.  相似文献   

5.
Generalized polynomials are functions obtained from conventional polynomials by applying the operations of taking the integer part, addition, and multiplication. We construct a system of “basic” generalized polynomials with the property that any bounded generalized polynomial is representable as a piecewise polynomial function of these basic ones. Such a representation is unique up to a function vanishing almost everywhere, which solves the problem of determining whether two generalized polynomials are equal a.e. The basic generalized polynomials are jointly equidistributed, thus we also obtain an effective algorithm of finding the limiting distribution of values of one or several generalized polynomials.  相似文献   

6.
A new class of three-variable orthogonai polynomials,defined as eigenfunctions of a second order PDE operator,is studied.These polynomials are orthogonal over a curved tetrahedron region, which can be seen as a mapping from a traditional tetrahedron,and can be taken as an extension of the 2-D Steiner domain.The polynomials can be viewed as Jacobi polynomials on such a domain.Three- term relations are derived explicitly.The number of the individual terms,involved in the recurrences relations,are shown to be independent on the total degree of the polynomials.The numbers now are determined to be five and seven,with respect to two conjugate variables z,(?) and a real variable r, respectively.Three examples are discussed in details,which can be regarded as the analogues of the Chebyshev polynomials of the first and the second kinds,and Legendre polynomials.  相似文献   

7.
Orthogonal polynomials on the real line always satisfy a three-term recurrence relation. The recurrence coefficients determine a tridiagonal semi-infinite matrix (Jacobi matrix) which uniquely characterizes the orthogonal polynomials. We investigate new orthogonal polynomials by adding to the Jacobi matrixrnew rows and columns, so that the original Jacobi matrix is shifted downward. Thernew rows and columns contain 2rnew parameters and the newly obtained orthogonal polynomials thus correspond to an upward extension of the Jacobi matrix. We give an explicit expression of the new orthogonal polynomials in terms of the original orthogonal polynomials, their associated polynomials, and the 2rnew parameters, and we give a fourth order differential equation for these new polynomials when the original orthogonal polynomials are classical. Furthermore we show how the 1?orthogonalizing measure for these new orthogonal polynomials can be obtained and work out the details for a one-parameter family of Jacobi polynomials for which the associated polynomials are again Jacobi polynomials.  相似文献   

8.
Almost four decades ago, H.M. Srivastava considered a general family of univariate polynomials, the Srivastava polynomials, and initiated a systematic investigation for this family [10]. In 2001, B. González, J. Matera and H.M. Srivastava extended the Srivastava polynomials by inserting one more parameter [4]. In this study we obtain a family of linear generating functions for these extended polynomials. Some illustrative results including Jacobi, Laguerre and Bessel polynomials are also presented. Furthermore, mixed multilateral and multilinear generating functions are derived for these polynomials.  相似文献   

9.
Bernoulli多项式的积分多项式   总被引:2,自引:2,他引:0  
首次研究了 Bernoulli多项式的积分多项式 .首先 ,给出这类多项式的定义和基本性质 ;其次 ,建立两类幂和多项式的相互关系 ;最后 ,介绍上述结果在求解自然数幂和公式方面的应用 .  相似文献   

10.
Schur polynomials are a special case of Schubert polynomials. In this paper, we give an algorithm to compute the product of a Schubert polynomial with a Schur polynomial on the basis of Schubert polynomials. This is a special case of the general problem of the multiplication of two Schubert polynomials, where the corresponding algorithm is still missing. The main tools for the given algorithm is a factorization property of a special class of Schubert polynomials and the transition formula for Schubert polynomials.  相似文献   

11.
Alternating matrix polynomials, that is, polynomials whose coefficients alternate between symmetric and skew-symmetric matrices, generalize the notions of even and odd scalar polynomials. We investigate the Smith forms of alternating matrix polynomials, showing that each invariant factor is an even or odd scalar polynomial. Necessary and sufficient conditions are derived for a given Smith form to be that of an alternating matrix polynomial. These conditions allow a characterization of the possible Jordan structures of alternating matrix polynomials, and also lead to necessary and sufficient conditions for the existence of structure-preserving strong linearizations. Most of the results are applicable to singular as well as regular matrix polynomials.  相似文献   

12.
In the present paper the orthogonality relations, exhibited by both numerator and denominator polynomials of both even and odd order convergents of a regular C-fraction of a power series with coefficients as reciprocal of odd numbers are described. The two sequences of convergents are nothing but diagonal and upper diagonal Pade approximants for the power series. The two orthogonal polynomials extracted from denominators are shown to be classical orthogonal polynomials and two orthogonal polynomials extracted from numerators are shown to be non-classical orthogonal polynomials..  相似文献   

13.
We give new sufficient conditions for a sequence of polynomials to have only real zeros based on the method of interlacing zeros. As applications we derive several well-known facts, including the reality of zeros of orthogonal polynomials, matching polynomials, Narayana polynomials and Eulerian polynomials. We also settle certain conjectures of Stahl on genus polynomials by proving them for certain classes of graphs, while showing that they are false in general.  相似文献   

14.
本文研究四元数体 Q上多项式的零点 ,特别对于其中两类多项式——系数两两可换的多项式和二次多项式建立了系统而完善的零点理论 .  相似文献   

15.
Main purpose of this paper is to reconstruct generating function of the Bernstein type polynomials. Some properties of this generating functions are given. By applying this generating function, not only derivative of these polynomials but also recurrence relations of these polynomials are found. Interpolation function of these polynomials is also constructed by Mellin transformation. This function interpolates these polynomials at negative integers which are given explicitly. Moreover, relations between these polynomials, the Stirling numbers of the second kind and Bernoulli polynomials of higher order are given. Furthermore some remarks associated with the Bezier curves are given.  相似文献   

16.
The sequences of quasi-orthogonal polynomials of order r are defined for non-quasi-definite moment functionals. Properties concerning the existence of such sequences, and relations between a quasi-orthogonal polynomial of order r and a set of orthogonal polynomials are proved. Two determinantal expressions of quasi-orthogonal polynomials of order r are given. At last it is proved that three consecutive polynomials of a sequence of quasi-orthogonal polynomials of order r satisfy a three term recurrence relation.  相似文献   

17.
In this article, the 2-variable general polynomials are taken as base with Peters polynomials to introduce a family of 2-variable Peters mixed type polynomials.These polynomials are framed within the context of monomiality principle and their properties are established. Certain summation formulae for these polynomials are also derived. Examples of some members belonging to this family are considered and numbers related to some mixed special polynomials are also explored.  相似文献   

18.
Certain generalizations of Sister Celine's polynomials are given which include most of the known polynomials as their special cases. Besides, generating functions and integral representations of these generalized polynomials are derived and a relation between generalized Laguerre polynomials and generalized Bateman's polynomials is established.  相似文献   

19.
In 1975, Tom Koornwinder studied examples of two variable analogues of the Jacobi polynomials in two variables. Those orthogonal polynomials are eigenfunctions of two commuting and algebraically independent partial differential operators. Some of these examples are well known classical orthogonal polynomials in two variables, such as orthogonal polynomials on the unit ball, on the simplex or the tensor product of Jacobi polynomials in one variable, but the remaining cases are not considered classical by other authors. The definition of classical orthogonal polynomials considered in this work provides a different perspective on the subject. We analyze in detail Koornwinder polynomials and using the Koornwinder tools, new examples of orthogonal polynomials in two variables are given.  相似文献   

20.
Summary. This paper studies polynomials used in polynomial preconditioning for solving linear systems of equations. Optimum preconditioning polynomials are obtained by solving some constrained minimax approximation problems. The resulting residual polynomials are referred to as the de Boor-Rice and Grcar polynomials. It will be shown in this paper that the de Boor-Rice and Grcar polynomials are orthogonal polynomials over several intervals. More specifically, each de Boor-Rice or Grcar polynomial belongs to an orthogonal family, but the orthogonal family varies with the polynomial. This orthogonality property is important, because it enables one to generate the minimax preconditioning polynomials by three-term recursive relations. Some results on the convergence properties of certain preconditioning polynomials are also presented. Received February 1, 1992/Revised version received July 7, 1993  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号