首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two of the basic results on edge coloring are Vizing’s Theorem [V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian); V.G. Vizing, The chromatic class of a multigraph, Kibernetika (Kiev) 3 (1965) 29-39 (in Russian). English translation in Cybernetics 1 32-41], which states that the chromatic index χ(G) of a (multi)graph G with maximum degree Δ(G) and maximum multiplicity μ(G) satisfies Δ(G)≤χ(G)≤Δ(G)+μ(G), and Holyer’s Theorem [I. Holyer, The NP-completeness of edge-colouring, SIAM J. Comput. 10 (1981) 718-720], which states that the problem of determining the chromatic index of even a simple graph is NP-hard. Hence, a good characterization of those graphs for which Vizing’s upper bound is attained seems to be unlikely. On the other hand, Vizing noticed in the first two above-cited references that the upper bound cannot be attained if Δ(G)=2μ(G)+1≥5. In this paper we discuss the problem: For which values Δ,μ does there exist a graph G satisfying Δ(G)=Δ, μ(G)=μ, and χ(G)=Δ+μ.  相似文献   

2.
The total chromatic number of a graph G, denoted by χ(G), is the minimum number of colors needed to color the vertices and edges of G such that no two adjacent or incident elements get the same color. It is known that if a planar graph G has maximum degree Δ≥9, then χ(G)=Δ+1. In this paper, we prove that if G is a planar graph with maximum degree 7, and for every vertex v, there is an integer kv∈{3,4,5,6} so that v is not incident with any kv-cycle, then χ(G)=8.  相似文献   

3.
A dynamic coloring of a graph is a proper coloring of its vertices such that every vertex of degree more than one has at least two neighbors with distinct colors. The least number of colors in a dynamic coloring of G, denoted by χ2(G), is called the dynamic chromatic number of G. The least integer k, such that if every vertex of G is assigned a list of k colors, then G has a proper (resp. dynamic) coloring in which every vertex receives a color from its own list, is called the choice number of G, denoted by ch(G) (resp. the dynamic choice number, denoted by ch2(G)). It was recently conjectured (Akbari et al. (2009) [1]) that for any graph G, ch2(G)=max(ch(G),χ2(G)). In this short note we disprove this conjecture. We first give an example of a small planar bipartite graph G with ch(G)=χ2(G)=3 and ch2(G)=4. Then, for any integer k≥5, we construct a bipartite graph Gk such that ch(Gk)=χ2(Gk)=3 and ch2(G)≥k.  相似文献   

4.
A proper coloring of the edges of a graph G is called acyclic if there is no 2‐colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. For certain graphs G, a′(G) ≥ Δ(G) + 2 where Δ(G) is the maximum degree in G. It is known that a′(G) ≤ 16 Δ(G) for any graph G. We prove that there exists a constant c such that a′(G) ≤ Δ(G) + 2 for any graph G whose girth is at least cΔ(G) log Δ(G), and conjecture that this upper bound for a′(G) holds for all graphs G. We also show that a′(G) ≤ Δ + 2 for almost all Δ‐regular graphs. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 157–167, 2001  相似文献   

5.
A coloring of a graph G is injective if its restriction to the neighborhood of any vertex is injective. The injective chromatic numberχi(G) of a graph G is the least k such that there is an injective k-coloring. In this paper we prove that if G is a planar graph with girth g and maximum degree Δ, then (1) χi(G)=Δ if either g≥20 and Δ≥3, or g≥7 and Δ≥71; (2) χi(G)≤Δ+1 if g≥11; (3) χi(G)≤Δ+2 if g≥8.  相似文献   

6.
Concise proofs for adjacent vertex-distinguishing total colorings   总被引:3,自引:0,他引:3  
Let G=(V,E) be a graph and f:(VE)→[k] be a proper total k-coloring of G. We say that f is an adjacent vertex- distinguishing total coloring if for any two adjacent vertices, the set of colors appearing on the vertex and incident edges are different. We call the smallest k for which such a coloring of G exists the adjacent vertex-distinguishing total chromatic number, and denote it by χat(G). Here we provide short proofs for an upper bound on the adjacent vertex-distinguishing total chromatic number of graphs of maximum degree three, and the exact values of χat(G) when G is a complete graph or a cycle.  相似文献   

7.
The total chromatic number χT(G) of a graph G is the least number of colors needed to color the vertices and the edges of G such that no adjacent or incident elements receive the same color. The Total Coloring Conjecture(TCC) states that for every simple graph G, χT(G)≤Δ(G)+2. In this paper, we show that χT(G)=Δ(G)+1 for all pseudo-Halin graphs with Δ(G)=4 and 5.  相似文献   

8.
Let G=(V,E)be a graph andφbe a total coloring of G by using the color set{1,2,...,k}.Let f(v)denote the sum of the color of the vertex v and the colors of all incident edges of v.We say thatφis neighbor sum distinguishing if for each edge uv∈E(G),f(u)=f(v).The smallest number k is called the neighbor sum distinguishing total chromatic number,denoted byχ′′nsd(G).Pil′sniak and Wo′zniak conjectured that for any graph G with at least two vertices,χ′′nsd(G)(G)+3.In this paper,by using the famous Combinatorial Nullstellensatz,we show thatχ′′nsd(G)2(G)+col(G)-1,where col(G)is the coloring number of G.Moreover,we prove this assertion in its list version.  相似文献   

9.
Acyclic chromatic indices of planar graphs with large girth   总被引:1,自引:0,他引:1  
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a(G) of G is the smallest k such that G has an acyclic edge coloring using k colors.In this paper, we prove that every planar graph G with girth g(G) and maximum degree Δ has a(G)=Δ if there exists a pair (k,m)∈{(3,11),(4,8),(5,7),(8,6)} such that G satisfies Δk and g(G)≥m.  相似文献   

10.
A deBruijn sequence of orderk, or a k-deBruijn sequence, over an alphabet A is a sequence of length |A|k in which the last element is considered adjacent to the first and every possible k-tuple from A appears exactly once as a string of k-consecutive elements in the sequence. We will say that a cyclic sequence is deBruijn-like if for some k, each of the consecutive k-element substrings is distinct.A vertex coloring χ:V(G)→[k] of a graph G is said to be proper if no pair of adjacent vertices in G receive the same color. Let C(v;χ) denote the multiset of colors assigned by a coloring χ to the neighbors of vertex v. A proper coloring χ of G is irregular if χ(u)=χ(v) implies that C(u;χ)≠C(v;χ). The minimum number of colors needed to irregularly color G is called the irregular chromatic number of G. The notion of the irregular chromatic number pairs nicely with other parameters aimed at distinguishing the vertices of a graph. In this paper, we demonstrate a connection between the irregular chromatic number of cycles and the existence of certain deBruijn-like sequences. We then determine the exact irregular chromatic number of Cn and Pn for n≥3, thus verifying two conjectures given by Okamoto, Radcliffe and Zhang.  相似文献   

11.
We study backbone colorings, a variation on classical vertex colorings: Given a graph G and a subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex k-coloring of G in which the colors assigned to adjacent vertices in H differ by at least 2. The minimal kN for which such a coloring exists is called the backbone chromatic number of G. We show that for a graph G of maximum degree Δ where the backbone graph is a d-degenerated subgraph of G, the backbone chromatic number is at most Δ+d+1 and moreover, in the case when the backbone graph being a matching we prove that the backbone chromatic number is at most Δ+1. We also present examples where these bounds are attained.Finally, the asymptotic behavior of the backbone chromatic number is studied regarding the degrees of G and H. We prove for any sparse graph G that if the maximum degree of a backbone graph is small compared to the maximum degree of G, then the backbone chromatic number is at most .  相似文献   

12.
A local coloring of a graph G is a function c:V(G)→N having the property that for each set SV(G) with 2≤|S|≤3, there exist vertices u,vS such that |c(u)−c(v)|≥mS, where mS is the number of edges of the induced subgraph 〈S〉. The maximum color assigned by a local coloring c to a vertex of G is called the value of c and is denoted by χ?(c). The local chromatic number of G is χ?(G)=min{χ?(c)}, where the minimum is taken over all local colorings c of G. The local coloring of graphs was introduced by Chartrand et al. [G. Chartrand, E. Salehi, P. Zhang, On local colorings of graphs, Congressus Numerantium 163 (2003) 207-221]. In this paper the local coloring of Kneser graphs is studied and the local chromatic number of the Kneser graph K(n,k) for some values of n and k is determined.  相似文献   

13.
Let G be a planar graph without adjacent 3-cycles, that is, two cycles of length 3 are not incident with a common edge. In this paper, it is proved that the total coloring conjecture is true for G; moreover, if Δ(G)≥9, then the total chromatic number χ(G) of G is Δ(G)+1. Some other related results are obtained, too.  相似文献   

14.
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of graph G. For a family F of graphs, the acyclic chromatic number of F, denoted by a(F), is defined as the maximum a(G) over all the graphs GF. In this paper we show that a(F)=8 where F is the family of graphs of maximum degree 5 and give a linear time algorithm to achieve this bound.  相似文献   

15.
Let G be a planar graph of maximum degree 6. In this paper we prove that if G does not contain either a 6-cycle, or a 4-cycle with a chord, or a 5- and 6-cycle with a chord, then χ(G)=6, where χ(G) denotes the chromatic index of G.  相似文献   

16.
We consider the following problem: given suitable integers χ and p, what is the smallest value ρ such that, for any graph G with chromatic number χ and any vertex coloring of G with at most χ+p colors, there is a vertex v such that at least χ different colors occur within distance ρ of v? Let ρ(χ,p) be this value; we show in particular that ρ(χ,p)?⌈p/2⌉+1 for all χ,p. We give the exact value of ρ when p=0 or χ?3, and (χ,p)=(4,1) or (4,2).  相似文献   

17.
Given a graph G, by a Grundy k-coloring of G we mean any proper k-vertex coloring of G such that for each two colors i and j, i<j, every vertex of G colored by j has a neighbor with color i. The maximum k for which there exists a Grundy k-coloring is denoted by Γ(G) and called Grundy (chromatic) number of G. We first discuss the fixed-parameter complexity of determining Γ(G)?k, for any fixed integer k and show that it is a polynomial time problem. But in general, Grundy number is an NP-complete problem. We show that it is NP-complete even for the complement of bipartite graphs and describe the Grundy number of these graphs in terms of the minimum edge dominating number of their complements. Next we obtain some additive Nordhaus-Gaddum-type inequalities concerning Γ(G) and Γ(Gc), for a few family of graphs. We introduce well-colored graphs, which are graphs G for which applying every greedy coloring results in a coloring of G with χ(G) colors. Equivalently G is well colored if Γ(G)=χ(G). We prove that the recognition problem of well-colored graphs is a coNP-complete problem.  相似文献   

18.
The total chromatic number χT(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no adjacent or incident pair of elements receive the same color. G is called Type 1 if χT(G)=Δ(G)+1. In this paper we prove that the join of a complete inequibipartite graph Kn1,n2 and a path Pm is of Type 1.  相似文献   

19.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, it is proved that every planar graph G with girth g and maximum degree Δ has(1)lc(G) ≤Δ 21 if Δ≥ 9; (2)lc(G) ≤「Δ/2」 + 7 ifg ≥ 5; (3) lc(G) ≤「Δ/2」 + 2 ifg ≥ 7 and Δ≥ 7.  相似文献   

20.
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to υ, where E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ aa (G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ aa (G) ≤ 32Δ. Supported by the Natural Science Foundation of Gansu Province (3ZS051-A25-025)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号