首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
From the view of bifurcation and chaos control, the dynamics of modified Chua’s circuit system are investigated by a delayed feedback method. Firstly, the local stability of the equilibria is discussed by analyzing the distribution of the roots of associated characteristic equation. The regions of linear stability of equilibria are given. It is found that there exist Hopf bifurcation and Hopf-zero bifurcation when the delay passes though a sequence of critical values. By using the normal form method and the center manifold theory, we derive the explicit formulas for determining the direction and stability of Hopf bifurcation. Finally, chaotic oscillation is converted into a stable equilibrium or a stable periodic orbit by designing appropriate feedback strength and delay. Some numerical simulations are carried out to support the analytic results.  相似文献   

2.
《Applied Mathematical Modelling》2014,38(9-10):2533-2542
In this paper, a predator–prey model consisting of active and dormant states of predators with impulsive control strategy is established. Using Floquet theories, the small amplitude perturbation technique and the piecewise Lyapunov function method, the conditions of local and global asymptotical orbital stability of the prey-eradication periodic solution are obtained. The boundness and permanence of the impulsive system are proved by the comparison principle. Through numerical simulations, the effects of the impulsive perturbation on the inherent oscillation are investigated, which implies that the impulsive perturbation can lead to period-doubling bifurcation, chaos, and period-halving bifurcation. Moreover, the effects of the impulsive perturbation and hatching rate on the chaos of the system are comparatively studied by numerical simulation. These obtained results can be useful for ecosystem management and for explaining complex phenomena of ecosystems.  相似文献   

3.
The purpose of this paper is to study bifurcation of an Internet congestion control algorithm, namely REM (Random Exponential Marking) algorithm, with communication delay. By choosing the delay constant as a bifurcation parameter, we prove that REM algorithm exhibits Hopf bifurcation. The formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are obtained by applying the center manifold theorem and the normal form theory. Finally, a numerical simulation is present to verify the theoretical results.  相似文献   

4.
A mathematical modeling technique is proposed for oscillation chaotization in an essentially nonlinear dissipative Duffing oscillator with two-frequency excitation on an invariant torus in ?2. The technique is based on the joint application of the parameter continuation method, Floquet stability criteria, bifurcation theory, and the Everhart high-accuracy numerical integration method. This approach is used for the numerical construction of subharmonic solutions in the case when the oscillator passes to chaos through a sequence of period-multiplying bifurcations. The value of a universal constant obtained earlier by the author while investigating oscillation chaotization in dissipative oscillators with single-frequency periodic excitation is confirmed.  相似文献   

5.
In structural reliability analysis, computation of reliability index or probability of failure is the main purpose. The Hasofer–Lind and Rackwitz–Fiessler (HL-RF) method is a widely used method in the category of first-order reliability methods (FORM). However, this method cannot be trusted for highly nonlinear limit state functions. Two proposed methods of this paper replace the original real valued constraint of FORM with a non-negative constraint, in all steps and during the whole procedure. First, the non-negative constraint is directly used to construct a non-negative Lagrange function and a search direction vector. Then, the first- and second-order Taylor approximation of the non-negative constraint are employed to compute step sizes of the first and second proposed methods, respectively. Contribution of the non-negative constraint and the effective approach of determining step sizes have led to the efficient computation of reliability index in nonlinear problems. The robustness and efficiency of two proposed methods are shown in various mathematical and structural examples of the literature.  相似文献   

6.
This paper studies chaos synchronization dynamics of two resistively coupled Duffing systems, through numerical and experimental investigations. Various bifurcation structures are derived and it is found that chaos appear suddenly, through period doubling cascades. The experimental study of these systems is carried out with appropriate software electronic circuit, proposed using the BSIMV3.3 parameters for the investigation of the dynamical behavior. The appropriate coupled coefficient for chaos synchronization is found using numerical and experimental simulations. The reliability of the analytical formulas is approved by the good agreement with the results obtained by both numerical and experiment simulations.  相似文献   

7.
In this paper, by using theories and methods of ecology and ordinary differential equation, the dynamics complexity of a prey–predator system with Beddington-type functional response and impulsive control strategy is established. Conditions for the system to be extinct are given by using the Floquet theory of impulsive equation and small amplitude perturbation skills. Furthermore, by using the method of numerical simulation with the international software Maple, the influence of the impulsive perturbations on the inherent oscillation is investigated, which shows rich dynamics, such as quasi-periodic oscillation, narrow periodic window, wide periodic window, chaotic bands, period doubling bifurcation, symmetry-breaking pitchfork bifurcation, period-halving bifurcation and crises, etc. The numerical results indicate that computer simulation is a useful method for studying the complex dynamic systems.  相似文献   

8.
Bifurcations and Chaos in Duffing Equation   总被引:2,自引:0,他引:2  
The Duffing equation with even-odd asymmetrical nonlinear-restoring force and one external forcingis investigated.The conditions of existence of primary resonance,second-order,third-order subharmonics,m-order subharmonics and chaos are given by using the second-averaging method,the Melnikov method andbifurcation theory.Numerical simulations including bifurcation diagram,bifurcation surfaces and phase portraitsshow the consistence with the theoretical analysis.The numerical results also exhibit new dynamical behaviorsincluding onset of chaos,chaos suddenly disappearing to periodic orbit,cascades of inverse period-doublingbifurcations,period-doubling bifurcation,symmetry period-doubling bifurcations of period-3 orbit,symmetry-breaking of periodic orbits,interleaving occurrence of chaotic behaviors and period-one orbit,a great abundanceof periodic windows in transient chaotic regions with interior crises and boundary crisis and varied chaoticattractors.Our results show that many dynamical behaviors are strictly departure from the behaviors of theDuffing equation with odd-nonlinear restoring force.  相似文献   

9.
The dynamics of a Beddington-type system with impulsive control strategy   总被引:2,自引:0,他引:2  
In this paper, by using the theories and methods of ecology and ordinary differential equation, a prey–predator system with Beddington-type functional response and impulsive control strategy is established. Conditions for the system to be extinct are given by using the theories of impulsive equation and small amplitude perturbation skills. It is proved that the system is permanent via the method of comparison involving multiple Liapunov functions. Furthermore, by using the method of numerical simulation, the influence of the impulsive control strategy on the inherent oscillation are investigated, which shows rich dynamics, such as period doubling bifurcation, crises, symmetry-breaking pitchfork bifurcations, chaotic bands, quasi-periodic oscillation, narrow periodic window, wide periodic window, period-halving bifurcation, etc. That will be useful for study of the dynamic complexity of ecosystems.  相似文献   

10.
Combining Fourier series expansion with recursive matrix formulas, new reliable algorithms to compute the periodic, non-negative, definite stabilizing solutions of the periodic Riccati and Lyapunov matrix differential equations are proposed in this paper. First, periodic coefficients are expanded in terms of Fourier series to solve the time-varying periodic Riccati differential equation, and the state transition matrix of the associated Hamiltonian system is evaluated precisely with sine and cosine series. By introducing the Riccati transformation method, recursive matrix formulas are derived to solve the periodic Riccati differential equation, which is composed of four blocks of the state transition matrix. Second, two numerical sub-methods for solving Lyapunov differential equations with time-varying periodic coefficients are proposed, both based on Fourier series expansion and the recursive matrix formulas. The former algorithm is a dimension expanding method, and the latter one uses the solutions of the homogeneous periodic Riccati differential equations. Finally, the efficiency and reliability of the proposed algorithms are demonstrated by four numerical examples.  相似文献   

11.
In this paper, dynamics of the fractional-order simplied Lorenz hyperchaotic system is investigated. Modied Adams-Bashforth-Moulton method is applied for numerical simulation. Chaotic regions and periodic windows are identied. Dierent types of motions are shown along the routes to chaos by means of phase portraits, bifurcation diagrams, and the largest Lyapunov exponent. The lowest fractional order to generate chaos is 3.8584. Synchronization between two fractional-order simplied Lorenz hyperchaotic systems is achieved by using active control method. The synchronization performances are studied by changing the fractional order, eigenvalues and eigenvalue standard deviation of the error system.  相似文献   

12.
A new iterative method for high-precision numerical integration of rational functions on the real line is presented. The algorithm transforms the rational integrand into a new rational function preserving the integral on the line. The coefficients of the new function are explicit polynomials in the original ones. These transformations depend on the degree of the input and the desired order of the method. Both parameters are arbitrary. The formulas can be precomputed. Iteration yields an approximation of the desired integral with mth order convergence. Examples illustrating the automatic generation of these formulas and the numerical behaviour of this method are given.  相似文献   

13.
The bifurcation theory and numerics of periodic orbits of general dynamical systems is well developed, and in recent years, there has been rapid progress in the development of a bifurcation theory for dynamical systems with structure, such as symmetry or symplecticity. But as yet, there are few results on the numerical computation of those bifurcations. The methods we present in this paper are a first step toward a systematic numerical analysis of generic bifurcations of Hamiltonian symmetric periodic orbits and relative periodic orbits (RPOs). First, we show how to numerically exploit spatio-temporal symmetries of Hamiltonian periodic orbits. Then we describe a general method for the numerical computation of RPOs persisting from periodic orbits in a symmetry breaking bifurcation. Finally, we present an algorithm for the numerical continuation of non-degenerate Hamiltonian relative periodic orbits with regular drift-momentum pair. Our path following algorithm is based on a multiple shooting algorithm for the numerical computation of periodic orbits via an adaptive Poincaré section and a tangential continuation method with implicit reparametrization. We apply our methods to continue the famous figure eight choreography of the three-body system. We find a relative period doubling bifurcation of the planar rotating eight family and compute the rotating choreographies bifurcating from it.   相似文献   

14.
Logistic阻滞增长模型的稳定性与混沌   总被引:3,自引:0,他引:3  
将Logistic阻滞增长模型的差分形式简化,讨论了它的稳定性,用计算机进行迭代求解。模拟了这一简单差分方程从收敛,分叉,2^n倍周期收敛进入混沌现象的过程。直观地展示了序列{yk}收敛,2倍周期,4倍周期……直至混沌的现象,这对Logistic阻滞增长模型的应用和混沌现象的模拟有很好的参考价值。  相似文献   

15.
研究了具有重根的非线性方程的迭代方法,对基于动力系统的新牛顿类方法作了修改,改进方法仍保持了牛顿方法的二阶收敛性.数值实验结果验证了方法的有效性.  相似文献   

16.
This article is devoted to the numerical analysis of two classes of iterative methods that combine integral formulas with finite‐difference Poisson solvers for the solution of elliptic problems. The first method is in the spirit of the Schwarz domain decomposition method for exterior domains. The second one is motivated by potential calculations in free boundary problems and can be viewed as a numerical analytic continuation algorithm. Numerical tests are presented that confirm the convergence properties predicted by numerical analysis. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 199–229, 2004  相似文献   

17.
In this paper, by using theories and methods of ecology and ODE, a two-prey one-predator system with Watt-type functional response and impulsive perturbations on the predator is established. The system is affected by impulse which can be considered as a control. Conditions for the permanence of the system are obtained. The numerical analysis is carried out to study the effects of perturbation varying parameters of the system. The system shows the rich dynamic behavior including quasi-periodic oscillation, narrow periodic window, wide periodic window, chaotic bands, period doubling bifurcation, symmetry-breaking pitchfork bifurcation, period-halving bifurcation and crises, etc.  相似文献   

18.
In this paper, bifurcation trees of periodic motions in a periodically forced, time-delayed, hardening Duffing oscillator are analytically predicted by a semi-analytical method. Such a semi-analytical method is based on the differential equation discretization of the time-delayed, nonlinear dynamical system. Bifurcation trees for the stable and unstable solutions of periodic motions to chaos in such a time-delayed, Duffing oscillator are achieved analytically. From the finite discrete Fourier series, harmonic frequency-amplitude curves for stable and unstable solutions of period-1 to period-4 motions are developed for a better understanding of quantity levels, singularity and catastrophes of harmonic amplitudes in the frequency domain. From the analytical prediction, numerical results of periodic motions in the time-delayed, hardening Duffing oscillator are completed. Through the numerical illustrations, the complexity and asymmetry of period-1 motions to chaos in nonlinear dynamical systems are strongly dependent on the distributions and quantity levels of harmonic amplitudes. With the quantity level increases of specific harmonic amplitudes, effects of the corresponding harmonics on the periodic motions become strong, and the certain complexity and asymmetry of periodic motion and chaos can be identified through harmonic amplitudes with higher quantity levels.  相似文献   

19.
管俊彪 《数学学报》2007,50(1):63-74
研究了含分散时滞反馈的Chen系统,利用Routh-Hurwitz准则分析了在弱核及强核情形下平衡点的局部稳定性及Hopf分支的存在性.还运用规范型理论及中心流形定理,得出了包括决定分支周期解的方向、稳定性和周期的清晰的计算公式,其结果可用于混沌控制分析.  相似文献   

20.
According to the period-adding firing patterns without chaos observed in neuronal experiments, the genesis of the period-adding “fold/homoclinic” bursting sequence without bursting-chaos is explored by numerical simulation, fast/slow dynamics and bifurcation analysis of limit cycle in the neuronal Chay model. It is found that each periodic bursting, from period-1 to period-7, is separately generated by the corresponding periodic spiking pattern through two period-doubling bifurcations, except for the period-1 bursting occurring via a Hopf bifurcation. Consequently, it can be revealed that this period-adding bursting bifurcation without chaos has a compound bifurcation structure with transitions from spiking to bursting, which is closely related to period-doubling bifurcations of periodic spiking in essence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号