首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies sensor calibration in spectral estimation where the true frequencies are located on a continuous domain. We consider a uniform array of sensors that collects measurements whose spectrum is composed of a finite number of frequencies, where each sensor has an unknown calibration parameter. Our goal is to recover the spectrum and the calibration parameters simultaneously from multiple snapshots of the measurements. In the noiseless case with an infinite number of snapshots, we prove uniqueness of this problem up to certain trivial, inevitable ambiguities based on an algebraic method, as long as there are more sensors than frequencies. We then analyze the sensitivity of this algebraic technique with respect to the number of snapshots and noise.We next propose an optimization approach that makes full use of the measurements by minimizing a non-convex objective which is non-negative and continuously differentiable over all calibration parameters and Toeplitz matrices. We prove that, in the case of infinite snapshots and noiseless measurements, the objective vanishes only at equivalent solutions to the true calibration parameters and the measurement covariance matrix. The objective is minimized using Wirtinger gradient descent which is proven to converge to a critical point. We show empirically that this critical point provides a good approximation of the true calibration parameters and the underlying frequencies.  相似文献   

2.
For assignment problems a class of objective functions is studied by algebraic methods and characterized in terms of an axiomatic system. It says essentially that the coefficients of the objective function can be chosen from a totally ordered commutative semigroup, which obeys a divisibility axiom. Special cases of the general model are the linear assignment problem, the linear bottleneck problem, lexicographic multicriteria problems,p-norm assignment problems and others. Further a polynomial bounded algorithm for solving this generalized assignment problem is stated. The algebraic approach can be extended to a broader class of combinatorial optimization problems.  相似文献   

3.
The paper introduces a new approach to analyze the stability of neural network models without using any Lyapunov function. With the new approach, we investigate the stability properties of the general gradient-based neural network model for optimization problems. Our discussion includes both isolated equilibrium points and connected equilibrium sets which could be unbounded. For a general optimization problem, if the objective function is bounded below and its gradient is Lipschitz continuous, we prove that (a) any trajectory of the gradient-based neural network converges to an equilibrium point, and (b) the Lyapunov stability is equivalent to the asymptotical stability in the gradient-based neural networks. For a convex optimization problem, under the same assumptions, we show that any trajectory of gradient-based neural networks will converge to an asymptotically stable equilibrium point of the neural networks. For a general nonlinear objective function, we propose a refined gradient-based neural network, whose trajectory with any arbitrary initial point will converge to an equilibrium point, which satisfies the second order necessary optimality conditions for optimization problems. Promising simulation results of a refined gradient-based neural network on some problems are also reported.  相似文献   

4.
A relative extrema optimization problem is one in which the domain of the objective function (i.e. the function whose maximum or minimum value is to be found) is an open interval. An absolute extrema optimization problem is one in which the domain of the objective function is a closed interval. Analysis of task-based interviews conducted with 12 pairs of business calculus students while reasoning about an absolute extrema optimization problem situated in a profit maximization context revealed that solving this task was particularly difficult for a majority of the students. Specifically, setting up the objective function, interpreting critical numbers and extrema, verifying extrema, and distinguishing between relative extrema and absolute extrema was problematic for some of the students. Implications for instruction are included.  相似文献   

5.
The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low-rank matrices, the Eckart–Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest point maps from the perspective of computational algebraic geometry. The Euclidean distance degree of a variety is the number of critical points of the squared distance to a general point outside the variety. Focusing on varieties seen in applications, we present numerous tools for exact computations.  相似文献   

6.
We consider combinatorial optimization problems with uncertain parameters of the objective function, where for each uncertain parameter an interval estimate is known. It is required to find a solution that minimizes the worst-case relative regret. For minmax relative regret versions of some subset-type problems, where feasible solutions are subsets of a finite ground set and the objective function represents the total weight of elements of a feasible solution, and for the minmax relative regret version of the problem of scheduling n jobs on a single machine to minimize the total completion time, we present a number of structural, algorithmic, and complexity results. Many of the results are based on generalizing and extending ideas and approaches from absolute regret minimization to the relative regret case.  相似文献   

7.
Deciding efficiently the emptiness of a real algebraic set defined by a single equation is a fundamental problem of computational real algebraic geometry. We propose an algorithm for this test. We find, when the algebraic set is non empty, at least one point on each semi-algebraically connected component. The problem is reduced to deciding the existence of real critical points of the distance function and computing them.  相似文献   

8.
We study the problem of existence of conformal metrics with prescribed Q-curvature on closed four-dimensional Riemannian manifolds. This problem has a variational structure, and in the case of interest here, it is noncompact in the sense that accumulations points of some noncompact flow lines of a pseudogradient of the associated Euler–Lagrange functional, the so-called true critical points at infinity of the associated variational problem, occur. Using the characterization of the critical points at infinity of the associated variational problem which is established in [42], combined with some arguments from Morse theory, some algebraic topological methods, and some tools from dynamical system originating from Conley's isolated invariant sets and isolated blocks theory, we derive a new kind of existence results under an algebraic topological hypothesis involving the topology of the underling manifold, stable and unstable manifolds of some of the critical points at infinity of the associated Euler–Lagrange functional.  相似文献   

9.
Krasnov  V. A. 《Mathematical Notes》2003,73(5-6):806-812
For real algebraic varieties whose real algebraic cohomology group is maximal, a canonical homomorphism is constructed from the cohomology group of the set of complex points into the cohomology group of the set of real points, and then it is proved that this homomorphism is an isomorphism.  相似文献   

10.
The aim of this paper is the development of an algorithm to find the critical points of a box-constrained multi-objective optimization problem. The proposed algorithm is an interior point method based on suitable directions that play the role of gradient-like directions for the vector objective function. The method does not rely on an “a priori” scalarization and is based on a dynamic system defined by a vector field of descent directions in the considered box. The key tool to define the mentioned vector field is the notion of vector pseudogradient. We prove that the limit points of the solutions of the system satisfy the Karush–Kuhn–Tucker (KKT) first order necessary condition for the box-constrained multi-objective optimization problem. These results allow us to develop an algorithm to solve box-constrained multi-objective optimization problems. Finally, we consider some test problems where we apply the proposed computational method. The numerical experience shows that the algorithm generates an approximation of the local optimal Pareto front representative of all parts of optimal front.  相似文献   

11.
An equality constrained optimization problem with a deterministic objective function and constraints in the form of mathematical expectation is considered. The constraints are transformed into the Sample Average Approximation form resulting in deterministic problem. A method which combines a variable sample size procedure with line search is applied to a penalty reformulation. The method generates a sequence that converges towards first-order critical points. The final stage of the optimization procedure employs the full sample and the SAA problem is eventually solved with significantly smaller cost. Preliminary numerical results show that the proposed method can produce significant savings compared to SAA method and some heuristic sample update counterparts while generating a solution of the same quality.  相似文献   

12.
Estimation of the Bezout number for piecewise algebraic curve   总被引:3,自引:0,他引:3  
A piecewise algebraic curve is a curve determined by the zero set of a bivariate spline function.In this paper.a coniecture on trianguation is confirmed The relation between the piecewise linear algebraiccurve and four-color conjecture is also presented.By Morgan-Scott triangulation, we will show the instabilityof Bezout number of piecewise algebraic curves. By using the combinatorial optimization method,an upper  相似文献   

13.
Underactuation occurs, when only some generalized coordinates have a control input. For end-effector trajectory tracking a combined feed-forward and feedback control is often a suitable approach. Feed-forward control design based on an inverse model for underactuated multibody systems is presented. The starting point is the transformation of the multibody system into a nonlinear input-output normal-form. The inverse model follows from this and consists of chains of differentiators, driven internal dynamics and an algebraic part. Especially when using the end-effector as system output the internal dynamics is often unbounded. In order to obtain a viable feed-forward control, a bounded solution must be determined. For this task the internal dynamics is solved as a nonlinear optimization problem. Thereby, the coordinates of the internal dynamics define the objective function which is minimized. The equation of the internal dynamics must be fulfilled at each point of a discrete time grid. In addition continuity of the solution is achieved by adding as equality constraint an integration formula, e.g. trapezoidal rule. The optimization problem is then solved by a SQP-method. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Motivated by finding an effective way to compute the algebraic complexity of the nearest point problem for algebraic models, we introduce an efficient method for detecting the limit points of the stratified Morse trajectories in a small perturbation of any polynomial function on a complex affine variety. We compute the multiplicities of these limit points in terms of vanishing cycles. In the case of functions with only isolated stratified singularities, we express the local multiplicities in terms of polar intersection numbers.  相似文献   

15.
We investigate two homotopies that perturb Kojima’s system for describing critical points of a nonlinear optimization problem in finite dimension. Each of them characterizes stationary points of a usual penalty and a new “barrier” function. The latter is a continuous deformation of the objective, symmetric to the penalty from a formal point of view. Stationary points of these functions appear as perturbed critical points and vice versa. This permits new interpretations of the related solution methods and allows estimates of the solutions by using implicit function theorems for Lipschitzian equations.  相似文献   

16.
利用零维多项式系统的有理单变元表示,给出了求多项式在有限点集上的正性判定算法.同时,结合不等式证明,呈现了目标函数在零维系统约束下最优化的一个纯代数算法,从而将多元函数约束优化问题转化为单变元函数在单变元多项式约束下的优化问题.新算法不仅能处理目标函数为多项式的最优化问题,而且还能处理目标函数为有理分式函数和根式函数的的最优化问题,并且给出了目标函数最优值的精确区间表示,使得能任意精度地逼近最优值.  相似文献   

17.
We study two approaches to replace a finite mathematical programming problem with inequality constraints by a problem that contains only equality constraints. The first approach lifts the feasible set into a high-dimensional space by the introduction of quadratic slack variables. We show that then not only the number of critical points but also the topological complexity of the feasible set grow exponentially. On the other hand, the second approach bases on an interior point technique and lifts an approximation of the feasible set into a space with only one additional dimension. Here only Karush–Kuhn–Tucker points with respect to the positive and negative objective function in the original problem give rise to critical points of the smoothed problem, so that the number of critical points as well as the topological complexity can at most double.  相似文献   

18.
Augmented Lagrangian function is one of the most important tools used in solving some constrained optimization problems. In this article, we study an augmented Lagrangian objective penalty function and a modified augmented Lagrangian objective penalty function for inequality constrained optimization problems. First, we prove the dual properties of the augmented Lagrangian objective penalty function, which are at least as good as the traditional Lagrangian function's. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker condition. This is especially so when the Karush-Kuhn-Tucker condition holds for convex programming of its saddle point existence. Second, we prove the dual properties of the modified augmented Lagrangian objective penalty function. For a global optimal solution, when the exactness of the modified augmented Lagrangian objective penalty function holds, its saddle point exists. The sufficient and necessary stability conditions used to determine whether the modified augmented Lagrangian objective penalty function is exact for a global solution is proved. Based on the modified augmented Lagrangian objective penalty function, an algorithm is developed to find a global solution to an inequality constrained optimization problem, and its global convergence is also proved under some conditions. Furthermore, the sufficient and necessary calmness condition on the exactness of the modified augmented Lagrangian objective penalty function is proved for a local solution. An algorithm is presented in finding a local solution, with its convergence proved under some conditions.  相似文献   

19.
Blackbox optimization problems are often contaminated with numerical noise, and direct search methods such as the Mesh Adaptive Direct Search (MADS) algorithm may get stuck at solutions artificially created by the noise. We propose a way to smooth out the objective function of an unconstrained problem using previously evaluated function evaluations, rather than resampling points. The new algorithm, called Robust-MADS is applied to a collection of noisy analytical problems from the literature and on an optimization problem to tune the parameters of a trust-region method.  相似文献   

20.
We propose a path following method to find the Pareto optimal solutions of a box-constrained multiobjective optimization problem. Under the assumption that the objective functions are Lipschitz continuously differentiable we prove some necessary conditions for Pareto optimal points and we give a necessary condition for the existence of a feasible point that minimizes all given objective functions at once. We develop a method that looks for the Pareto optimal points as limit points of the trajectories solutions of suitable initial value problems for a system of ordinary differential equations. These trajectories belong to the feasible region and their computation is well suited for a parallel implementation. Moreover the method does not use any scalarization of the multiobjective optimization problem and does not require any ordering information for the components of the vector objective function. We show a numerical experience on some test problems and we apply the method to solve a goal programming problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号