首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We consider a finite buffer capacity GI/GI/c/K-type retrial queueing system with constant retrial rate. The system consists of a primary queue and an orbit queue. The primary queue has \(c\) identical servers and can accommodate up to \(K\) jobs (including \(c\) jobs under service). If a newly arriving job finds the primary queue to be full, it joins the orbit queue. The original primary jobs arrive to the system according to a renewal process. The jobs have i.i.d. service times. The head of line job in the orbit queue retries to enter the primary queue after an exponentially distributed time independent of the length of the orbit queue. Telephone exchange systems, medium access protocols, optical networks with near-zero buffering and TCP short-file transfers are some telecommunication applications of the proposed queueing system. The model is also applicable in logistics. We establish sufficient stability conditions for this system. In addition to the known cases, the proposed model covers a number of new particular cases with the closed-form stability conditions. The stability conditions that we obtained have clear probabilistic interpretation.  相似文献   

2.
Over the past few decades, the Processor-Sharing (PS) discipline has attracted a great deal of attention in the queueing literature. While the PS paradigm emerged in the sixties as an idealization of round-robin scheduling in time-shared computer systems, it has recently captured renewed interest as a useful concept for modeling the flow-level performance of bandwidth-sharing protocols in communication networks. In contrast to the simple geometric queue length distribution, the sojourn time lacks such a nice closed-form characterization, even for exponential service requirements. In case of heavy-tailed service requirements however, there exists a simple asymptotic equivalence between the sojourn time and the service requirement distribution, which is commonly referred to as a reduced service rate approximation. In the present survey paper, we give an overview of several methods that have been developed to obtain such an asymptotic equivalence under various distributional assumptions. We outline the differences and similarities between the various approaches, discuss some connections, and present necessary and sufficient conditions for an asymptotic equivalence to hold. We also consider the generalization of the reduced service rate approximation to several extensions of the M/G/1 PS queue. In addition, we identify a relationship between the reduced service rate approximation and a queue length distribution with a geometrically decaying tail, and extend it to so-called bandwidth-sharing networks. The state-of-the-art with regard to sojourn time asymptotics in PS queues with light-tailed service requirements is also briefly described. Last, we reflect on some possible avenues for further research. AMS Subject Classification 60K25 (primary), 60F10, 68M20, 90B18, 90B22 (secondary).  相似文献   

3.
We consider a multi-server retrial queue with waiting places in service area and four types of arrivals, positive customers, disasters and two types of negative customers, one for deleting customers in orbit and the other for deleting customers in service area. The four types of arrivals occur according to a Markovian arrival process with marked transitions (MMAP) which may induce the dependence among the arrival processes of the four types. We derive a necessary and sufficient condition for the system to be positive recurrent by comparing sample paths of auxiliary systems whose stability conditions can be obtained. We use a generalized truncated system that is obtained by modifying the retrial rates for an approximation of stationary queue length distribution and show the convergence of approximation to the original model. An algorithmic solution for the stationary queue length distribution and some numerical results are presented.   相似文献   

4.
S. C. Borst 《Queueing Systems》1995,20(3-4):369-393
We consider polling systems with multiple coupled servers. We explore the class of systems that allow an exact analysis. For these systems we present distributional results for the waiting time, the marginal queue length, and the joint queue length at polling epochs. The class in question includes several single-queue systems with a varying number of servers, two-queue two-server systems with exhaustive service and exponential service times, as well as infinite-server systems with an arbitrary number of queues, exhaustive or gated service, and deterministic service times.  相似文献   

5.
We consider the following Type of problems. Calls arrive at a queue of capacity K (which is called the primary queue), and attempt to get served by a single server. If upon arrival, the queue is full and the server is busy, the new arriving call moves into an infinite capacity orbit, from which it makes new attempts to reach the primary queue, until it finds it non-full (or it finds the server idle). If the queue is not full upon arrival, then the call (customer) waits in line, and will be served according to the FIFO order. If λ is the arrival rate (average number per time unit) of calls and μ is one over the expected service time in the facility, it is well known that μ > λ is not always sufficient for stability. The aim of this paper is to provide general conditions under which it is a sufficient condition. In particular, (i) we derive conditions for Harris ergodicity and obtain bounds for the rate of convergence to the steady state and large deviations results, in the case that the inter-arrival times, retrial times and service times are independent i.i.d. sequences and the retrial times are exponentially distributed; (ii) we establish conditions for strong coupling convergence to a stationary regime when either service times are general stationary ergodic (no independence assumption), and inter-arrival and retrial times are i.i.d. exponentially distributed; or when inter-arrival times are general stationary ergodic, and service and retrial times are i.i.d. exponentially distributed; (iii) we obtain conditions for the existence of uniform exponential bounds of the queue length process under some rather broad conditions on the retrial process. We finally present conditions for boundedness in distribution for the case of nonpatient (or non persistent) customers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
We consider a system of parallel queues with Poisson arrivals and exponentially distributed service requirements. The various queues are coupled through their service rates, causing a complex dynamic interaction. Specifically, the system consists of one primary queue and several secondary queues whose service rates depend on whether the primary queue is empty or not. Conversely, the service rate of the primary queue depends on which of the secondary queues are empty.  相似文献   

7.
Eliazar  Iddo  Fibich  Gadi  Yechiali  Uri 《Queueing Systems》2002,42(4):325-353
Two random traffic streams are competing for the service time of a single server (multiplexer). The streams form two queues, primary (queue 1) and secondary (queue 0). The primary queue is served exhaustively, after which the server switches over to queue 0. The duration of time the server resides in the secondary queue is determined by the dynamic evolution in queue 1. If there is an arrival to queue 1 while the server is still working in queue 0, the latter is immediately gated, and the server completes service there only to the gated jobs, upon which it switches back to the primary queue. We formulate this system as a two-queue polling model with a single alternating server and with randomly-timed gated (RTG) service discipline in queue 0, where the timer there depends on the arrival stream to the primary queue. We derive Laplace–Stieltjes transforms and generating functions for various key variables and calculate numerous performance measures such as mean queue sizes at polling instants and at an arbitrary moment, mean busy period duration and mean cycle time length, expected number of messages transmitted during a busy period and mean waiting times. Finally, we present graphs of numerical results comparing the mean waiting times in the two queues as functions of the relative loads, showing the effect of the RTG regime.  相似文献   

8.
This paper considers polling systems with an autonomous server that remains at a queue for an exponential amount of time before moving to a next queue incurring a generally distributed switch-over time. The server remains at a queue until the exponential visit time expires, also when the queue becomes empty. If the queue is not empty when the visit time expires, service is preempted upon server departure, and repeated when the server returns to the queue. The paper first presents a necessary and sufficient condition for stability, and subsequently analyzes the joint queue-length distribution via an embedded Markov chain approach. As the autonomous exponential visit times may seem to result in a system that closely resembles a system of independent queues, we explicitly investigate the approximation of our system via a system of independent vacation queues. This approximation is accurate for short visit times only.   相似文献   

9.
Kow C. Chang 《Queueing Systems》1993,14(3-4):339-348
This paper considers the unknown stability conditions of a pipeline polling scheme proposed for satellite communications. This scheme is modelled as a cyclic-service system with limited service and reservation. The walk times and the maximum number of services to be performed during each polling are dependent on the queue lengths of the stations. The main result is the derivation of the necessary and sufficient stability conditions of the system. Our approach is to map the multi-dimensional stability problem into many 1-dimensional stability problems through the concept of the least stable queue. The least stable queue is one that will become unstablefirst when the system load increases in some parameter region. The stability of the least stable queue thus implies stability of the system. The stability region for the whole system is then the union of the queue stability regions of all the least stable queues that are obtained through dominant systems and Loynes' theorem. We also propose a computable sufficient condition that is tighter than the existing result and present some numerical results.  相似文献   

10.
The dual queue consists of two queues, called the primary queue and the secondary queue. There is a single server in the primary queue but the secondary queue has no service facility and only serves as a holding queue for the overloaded primary queue. The dual queue has the additional feature of a priority scheme to help reduce congestion. Two classes of customers, class 1 and 2, arrive to the dual queue as two independent Poisson processes and the single server in the primary queue dispenses an exponentially distributed service time at the rate which is dependent on the customer’s class. The service discipline is preemptive priority with priority given to class 1 over class 2 customers. In this paper, we use matrix-analytic method to construct the infinitesimal generator of the system and also to provide a detailed analysis of the expected waiting time of each class of customers in both queues.  相似文献   

11.
The problem considered is that of estimating the tail stationary probability for two exponential server queues in series fed by renewal arrivals. We compute the tail of the marginal queue length distribution at the second queue. The marginal at the first queue is known by the classical result for the GI/M/1 queue. The approach involves deriving necessary and sufficient conditions on the paths of the arrival and virtual service processes in order to get a large queue size at the second queue. We then use large deviations estimates of the probabilities of these paths, and solve a constrained convex optimization problem to find the most likely path leading to a large queue size. We find that the stationary queue length distribution at the second queue has an exponentially decaying tail, and obtain the exact rate of decay.Research supported in part by NSF grant NCR 88-57731 and the AT & T Foundation.  相似文献   

12.
In this paper, we develop a general framework to analyze polling systems with either the autonomous-server or the time-limited service discipline. According to the autonomous-server discipline, the server continues servicing a queue for a certain period of time. According to the time-limited service discipline, the server continues servicing a queue for a certain period of time or until the queue becomes empty, whichever occurs first. We consider Poisson batch arrivals and phase-type service times. It is known that these disciplines do not satisfy the well-known branching property in polling systems. Therefore, hardly any exact results exist in the literature. Our strategy is to apply an iterative scheme that is based on relating in closed-form the joint queue-lengths at the beginning and the end of a server visit to a queue. These kernel relations are derived using the theory of absorbing Markov chains.  相似文献   

13.
In this paper, we consider a queue whose service speed changes according to an external environment that is governed by a Markov process. It is possible that the server changes its service speed many times while serving a customer. We derive first and second moments of the service time of customers in system using first step analysis to obtain an insight on the service process. In fact, we obtain an intriguing result in that the moments of service time actually depend on the arrival process! We also show that the mean service rate is not the reciprocal of the mean service time. Further, since it is not possible to obtain a closed form expression for the queue length distribution, we use matrix geometric methods to compute performance measures such as average queue length and waiting time. We apply the method of large deviations to obtain tail distributions of the workload in the queue using the concept of effective bandwidth. We present two applications in computer systems: (1) Web server with multi-class requests and (2) CPU with multiple processes. We illustrate the analysis and various methods discussed with the help of numerical examples for the above two applications. AMS subject classification: 90B22, 68M20  相似文献   

14.
Consider a polling system withK1 queues and a single server that visits the queues in a cyclic order. The polling discipline in each queue is of general gated-type or exhaustive-type. We assume that in each queue the arrival times form a Poisson process, and that the service times, the walking times, as well as the set-up times form sequences of independent and identically distributed random variables. For such a system, we provide a sufficient condition under which the vector of queue lengths is stable. We treat several criteria for stability: the ergodicity of the process, the geometric ergodicity, and the geometric rate of convergence of the first moment. The ergodicity implies the weak convergence of station times, intervisit times and cycle times. Next, we show that the queue lengths, station times, intervisit times and cycle times are stochastically increasing in arrival rates, in service times, in walking times and in setup times. The stability conditions and the stochastic monotonicity results are extended to the polling systems with additional customer routing between the queues, as well as bulk and correlated arrivals. Finally, we prove that the mean cycle time, the mean intervisit time and the mean station times are invariant under general service disciplines and general stationary arrival and service processes.  相似文献   

15.
We consider the stability of parallel server systems under the longest queue first (LQF) rule. We show that when the underlying graph of a parallel server system is a tree, the standard nominal traffic condition is sufficient for the stability of that system under LQF when interarrival and service times have general distributions. Then we consider a special parallel server system, which is known as the X-model, whose underlying graph is not a tree. We provide additional “drift” conditions for the stability and transience of these queueing systems with exponential interarrival and service times. Drift conditions depend in general on the stationary distribution of an induced Markov chain that is derived from the underlying queueing system. We illustrate our results with examples and simulation experiments. We also demonstrate that the stability of the LQF depends on the tie-breaking rule used and that it can be unstable even under arbitrary low loads.  相似文献   

16.
Many service systems are appointment-driven. In such systems, customers make an appointment and join an external queue (also referred to as the “waiting list”). At the appointed date, the customer arrives at the service facility, joins an internal queue and receives service during a service session. After service, the customer leaves the system. Important measures of interest include the size of the waiting list, the waiting time at the service facility and server overtime. These performance measures may support strategic decision making concerning server capacity (e.g. how often, when and for how long should a server be online). We develop a new model to assess these performance measures. The model is a combination of a vacation queueing system and an appointment system.  相似文献   

17.
Methodology and Computing in Applied Probability - We study an enhanced hysteretic control system, with primary and secondary queues and random batch service. When the primary queue down-crosses r,...  相似文献   

18.
We study a system where a random flow of customers is served by servers (called agents) invited on-demand. Each invited agent arrives into the system after a random time; after each service completion, an agent returns to the system or leaves it with some fixed probabilities. Customers and/or agents may be impatient, that is, while waiting in queue, they leave the system at a certain rate (which may be zero). We consider the queue-length-based feedback scheme, which controls the number of pending agent invitations, depending on the customer and agent queue lengths and their changes. The basic objective is to minimize both customer and agent waiting times. We establish the system process fluid limits in the asymptotic regime where the customer arrival rate goes to infinity. We use the machinery of switched linear systems and common quadratic Lyapunov functions to approach the stability of fluid limits at the desired equilibrium point and derive a variety of sufficient local stability conditions. For our model, we conjecture that local stability is in fact sufficient for global stability of fluid limits; the validity of this conjecture is supported by numerical and simulation experiments. When local stability conditions do hold, simulations show good overall performance of the scheme.  相似文献   

19.
Consider a polling system of two queues served by a single server that visits the queues in cyclic order. The polling discipline in each queue is of exhaustive-type, and zero-switchover times are considered. We assume that the arrival times in each queue form a Poisson process and that the service times form sequences of independent and identically distributed random variables, except for the service distribution of the first customer who is served at each polling instant (the time in which the server moves from one queue to the other one). The sufficient and necessary conditions for the ergodicity of such polling system are established as well as the stationary distribution for the continuous-time process describing the state of the system. The proofs rely on the combination of three embedded processes that were previously used in the literature. An important result is that ρ=1 can imply ergodicity in one specific case, where ρ is the typical traffic intensity for polling systems, and ρ<1 is the classical non-saturation condition.  相似文献   

20.
G-networks are queueing models in which the types of customers one usually deals with in queues are enriched in several ways. In Gnetworks, positive customers are those that are ordinarily found in queueing systems; they queue up and wait for service, obtain service and then leave or go to some other queue. Negative customers have the specific function of destroying ordinary or positive customers. Finally triggers simply move an ordinary customer from one queue to the other. The term “signal” is used to cover negative customers and triggers. G-networks contain these three type of entities with certain restrictions; positive customers can move from one queue to another, and they can change into negative customers or into triggers when they leave a queue. On the other hand, signals (i.e. negative customers and triggers) do not queue up for service and simply disappear after having joined a queue and having destroyed or moved a negative customer. This paper considers this class of networks with multiple classes of positive customers and of signals. We show that with appropriate assumptions on service times, service disciplines, and triggering or destruction rules on the part of signals, these networks have a product form solution, extending earlier results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号