首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

We study a multilinear version of the Hörmander multiplier theorem, namely

$$ \Vert T_{\sigma}(f_{1},\dots,f_{n})\Vert_{L^{p}}\lesssim \sup_{k\in\mathbb{Z}}{\Vert \sigma(2^{k}\cdot,\dots,2^{k}\cdot)\widehat{\phi^{(n)}}\Vert_{L^{2}_{(s_{1},\dots,s_{n})}}}\Vert f_{1}\Vert_{H^{p_{1}}}\cdots\Vert f_{n}\Vert_{H^{p_{n}}}. $$

We show that the estimate does not hold in the limiting case \(\min \limits {(s_{1},\dots ,s_{n})}=d/2\) or \({\sum}_{k\in J}{({s_{k}}/{d}-{1}/{p_{k}})}=-{1}/{2}\) for some \(J \subset \{1,\dots ,n\}\). This provides the necessary and sufficient condition on \((s_{1},\dots ,s_{n})\) for the boundedness of Tσ.

  相似文献   

2.

In this paper we study the following fractional Hamiltonian systems

$$\begin{aligned} \left\{ \begin{array}{lllll} -_{t}D^{\alpha }_{\infty }(_{-\infty }D^{\alpha }_{t}x(t))- L(t).x(t)+\nabla W(t,x(t))=0, \\ x\in H^{\alpha }(\mathbb {R}, \mathbb {R}^{N}), \end{array} \right. \end{aligned}$$

where \(\alpha \in \left( {1\over {2}}, 1\right] ,\ t\in \mathbb {R}, x\in \mathbb {R}^N,\ _{-\infty }D^{\alpha }_{t}\) and \(_{t}D^{\alpha }_{\infty }\) are the left and right Liouville–Weyl fractional derivatives of order \(\alpha \) on the whole axis \(\mathbb {R}\) respectively, \(L:\mathbb {R}\longrightarrow \mathbb {R}^{2N}\) and \(W: \mathbb {R}\times \mathbb {R}^{N}\longrightarrow \mathbb {R}\) are suitable functions. One ground state solution is obtained by applying the monotonicity trick of Jeanjean and the concentration-compactness principle in the case where the matrix L(t) is positive definite and \(W \in C^{1}(\mathbb {R}\times \mathbb {R}^{N},\mathbb {R})\) is superquadratic but does not satisfy the usual Ambrosetti–Rabinowitz condition.

  相似文献   

3.

Consider the following nonparametric model: \(Y_{ni}=g(x_{ni})+ \varepsilon _{ni},1\le i\le n,\) where \(x_{ni}\in {\mathbb {A}}\) are the nonrandom design points and \({\mathbb {A}}\) is a compact set of \({\mathbb {R}}^{m}\) for some \(m\ge 1\), \(g(\cdot )\) is a real valued function defined on \({\mathbb {A}}\), and \(\varepsilon _{n1},\ldots ,\varepsilon _{nn}\) are \(\rho ^{-}\)-mixing random errors with zero mean and finite variance. We obtain the Berry–Esseen bounds of the weighted estimator of \(g(\cdot )\). The rate can achieve nearly \(O(n^{-1/4})\) when the moment condition is appropriate. Moreover, we carry out some simulations to verify the validity of our results.

  相似文献   

4.
Li  Zhongyan  Han  Deguang 《Acta Appl Math》2019,160(1):53-65

We consider the problem of characterizing the bounded linear operator multipliers on \(L^{2}(\mathbb{R})\) that map Gabor frame generators to Gabor frame generators. We prove that a functional matrix \(M(t)=[f_{ij}(t)]_{m \times m}\) (where \(f_{ij}\in L^{\infty}(\mathbb{R})\)) is a multiplier for Parseval Gabor multi-frame generators with parameters \(a, b >0\) if and only if \(M(t)\) is unitary and \(M^{*}(t)M(t+\frac{1}{b})= \lambda(t)I\) for some unimodular \(a\)-periodic function \(\lambda(t)\). As a special case (\(m =1\)) this recovers the characterization of functional multipliers for Parseval Gabor frames with single function generators.

  相似文献   

5.

Let \(p(\cdot ):\ {{\mathbb {R}}}^n\rightarrow (0,\infty ]\) be a variable exponent function satisfying the globally log-Hölder continuous condition, \(q\in (0,\infty ]\) and A be a general expansive matrix on \({\mathbb {R}}^n\). Let \(H_A^{p(\cdot ),q}({{\mathbb {R}}}^n)\) be the anisotropic variable Hardy–Lorentz space associated with A defined via the radial grand maximal function. In this article, the authors characterize \(H_A^{p(\cdot ),q}({{\mathbb {R}}}^n)\) by means of the Littlewood–Paley g-function or the Littlewood–Paley \(g_\lambda ^*\)-function via first establishing an anisotropic Fefferman–Stein vector-valued inequality on the variable Lorentz space \(L^{p(\cdot ),q}({\mathbb {R}}^n)\). Moreover, the finite atomic characterization of \(H_A^{p(\cdot ),q}({{\mathbb {R}}}^n)\) is also obtained. As applications, the authors then establish a criterion on the boundedness of sublinear operators from \(H^{p(\cdot ),q}_A({\mathbb {R}}^n)\) into a quasi-Banach space. Applying this criterion, the authors show that the maximal operators of the Bochner–Riesz and the Weierstrass means are bounded from \(H^{p(\cdot ),q}_A({\mathbb {R}}^n)\) to \(L^{p(\cdot ),q}({\mathbb {R}}^n)\) and, as consequences, some almost everywhere and norm convergences of these Bochner–Riesz and Weierstrass means are also obtained. These results on the Bochner–Riesz and the Weierstrass means are new even in the isotropic case.

  相似文献   

6.
In this paper, we first prove that the solution map of the Cauchy problem for a coupled Camassa–Holm system is not uniformly continuous in \({H^{s}(\mathbb{T}) \times H^{s}(\mathbb{T}),s > \frac{3}{2}}\), the proof of which is based on well posedness estimates and the method of approximate solutions. Then we study the continuity properties of its solution map further and show that it is Hölder continuous in the \({H^\sigma(\mathbb{T}) \times H^\sigma(\mathbb{T})}\) topology with \({\frac{1}{2} < \sigma < s}\). Our results can also be carried out on the nonperiodic case.  相似文献   

7.
In this article, we consider the following fractional Hamiltonian systems:
$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$
where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.
  相似文献   

8.

Let \(K\subset {\mathbb {R}}^d\) be a bounded set with positive Lebesgue measure. Let \(\Lambda =M({\mathbb {Z}}^{2d})\) be a lattice in \({\mathbb {R}}^{2d}\) with density dens\((\Lambda )=1\). It is well-known that if M is a diagonal block matrix with diagonal matrices A and B, then \({\mathcal {G}}(|K|^{-1/2}\chi _K, \Lambda )\) is an orthonormal basis for \(L^2({\mathbb {R}}^d)\) if and only if K tiles both by \(A({\mathbb {Z}}^d)\) and \(B^{-t}({\mathbb {Z}}^d)\). However, there has not been any intensive study when M is not a diagonal matrix. We investigate this problem for a large class of important cases of M. In particular, if M is any lower block triangular matrix with diagonal matrices A and B, we prove that if \({\mathcal {G}}(|K|^{-1/2}\chi _K, \Lambda )\) is an orthonormal basis, then K can be written as a finite union of fundamental domains of \(A({{\mathbb {Z}}}^d)\) and at the same time, as a finite union of fundamental domains of \(B^{-t}({{\mathbb {Z}}}^d)\). If \(A^tB\) is an integer matrix, then there is only one common fundamental domain, which means K tiles by a lattice and is spectral. However, surprisingly, we will also illustrate by an example that a union of more than one fundamental domain is also possible. We also provide a constructive way for forming a Gabor window function for a given upper triangular lattice. Our study is related to a Fuglede’s type problem in Gabor setting and we give a partial answer to this problem in the case of lattices.

  相似文献   

9.
We analyze univariate oscillatory integrals defined on the real line for functions from the standard Sobolev space \(H^{s} (\mathbb {R})\) and from the space \(C^{s}(\mathbb {R})\) with an arbitrary integer s ≥ 1. We find tight upper and lower bounds for the worst case error of optimal algorithms that use n function values. More specifically, we study integrals of the form
$$ I_{k}^{\varrho} (f) = {\int}_{\mathbb{R}} f(x) \,\mathrm{e}^{-i\,kx} \varrho(x) \, \mathrm{d} x\ \ \ \text{for}\ \ f\in H^{s}(\mathbb{R})\ \ \text{or}\ \ f\in C^{s}(\mathbb{R}) $$
(1)
with \(k\in {\mathbb {R}}\) and a smooth density function ρ such as \( \rho (x) = \frac {1}{\sqrt {2 \pi }} \exp (-x^{2}/2)\). The optimal error bounds are \({\Theta }((n+\max (1,|k|))^{-s})\) with the factors in the Θ notation dependent only on s and ?.  相似文献   

10.

We prove that an overcomplete Gabor frame in \({\ell }^2({\mathbb {Z}})\) generated by a finitely supported sequence is always linearly dependent. This is a particular case of a general result about linear dependence versus independence for Gabor systems in \({\ell }^2({\mathbb {Z}})\) with modulation parameter 1 / M and translation parameter N for some \(M,N\in {\mathbb {N}},\) and generated by a finite sequence g in \({\ell }^2({\mathbb {Z}})\) with K nonzero entries.

  相似文献   

11.

The problem of the minimax testing of the Poisson process intensity \({\mathbf{s}}\) is considered. For a given intensity \({\mathbf{p}}\) and a set \(\mathcal{Q}\), the minimax testing of the simple hypothesis \(H_{0}: {\mathbf{s}} = {\mathbf{p}}\) against the composite alternative \(H_{1}: {\mathbf{s}} = {\mathbf{q}},\,{\mathbf{q}} \in \mathcal{Q}\) is investigated. The case, when the 1-st kind error probability \(\alpha \) is fixed and we are interested in the minimal possible 2-nd kind error probability \(\beta ({\mathbf{p}},\mathcal{Q})\), is considered. What is the maximal set \(\mathcal{Q}\), which can be replaced by an intensity \({\mathbf{q}} \in \mathcal{Q}\) without any loss of testing performance? In the asymptotic case (\(T\rightarrow \infty \)) that maximal set \(\mathcal{Q}\) is described.

  相似文献   

12.
Xia  Aliang 《Acta Appl Math》2020,166(1):147-159

We study the existence, nonexistence and multiplicity of solutions to Chern-Simons-Schrödinger system

$$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad }l} -\Delta u+u+\lambda (\frac{h^{2}(|x|)}{|x|^{2}}+\int _{|x|}^{+ \infty }\frac{h(s)}{s}u^{2}(s)ds )u=|u|^{p-2}u,\quad x\in \mathbb{R}^{2}, \\ u\in H^{1}_{r}(\mathbb{R}^{2}), \end{array}\displaystyle \right . \end{aligned}$$

where \(\lambda >0\) is a parameter, \(p\in (2,4)\) and

$$ h(s)=\frac{1}{2} \int _{0}^{s}ru^{2}(r)dr. $$

We prove that the system has no solutions for \(\lambda \) large and has two radial solutions for \(\lambda \) small by studying the decomposition of the Nehari manifold and adapting the fibering method. We also give the qualitative properties about the energy of the solutions and a variational characterization of these extremals values of \(\lambda \). Our results improve some results in Pomponio and Ruiz (J. Eur. Math. Soc. 17:1463–1486, 2015).

  相似文献   

13.
We consider the problem
$$\varepsilon^{2s} (-\partial_{xx})^s \tilde{u}(\tilde{x}) -V(\tilde{x})\tilde{u}(\tilde{x})(1-\tilde{u}^2(\tilde{x}))=0 \quad{\rm in} \mathbb{R},$$
where \({(-\partial_{xx})^s}\) denotes the usual fractional Laplace operator, \({\varepsilon > 0}\) is a small parameter and the smooth bounded function V satisfies \({{\rm inf}_{\tilde{x} \in \mathbb{R}}V(\tilde{x}) > 0}\). For \({s\in(\frac{1}{2},1)}\), we prove the existence of separate multi-layered solutions for any small \({\varepsilon}\), where the layers are located near any non-degenerate local maximal points and non-degenerate local minimal points of function V. We also prove the existence of clustering-layered solutions, and these clustering layers appear within a very small neighborhood of a local maximum point of V.
  相似文献   

14.
In a general unbounded uniform C 2-domain \({\Omega \subset \mathbb{R}^n, n \geq 3}\) , and \({1\leq q\leq \infty}\) consider the spaces \({\tilde{L}^q(\Omega)}\) defined by \({\tilde{L^q}(\Omega) := \left\{\begin{array}{ll}L^q(\Omega)+L^2(\Omega),\quad q < 2, \\ L^q(\Omega)\cap L^2(\Omega),\quad q\geq 2, \end{array}\right.}\) and corresponding subspaces of solenoidal vector fields, \({\tilde{L}^q_\sigma(\Omega)}\) . By studying the complex and real interpolation spaces of these we derive embedding properties for fractional order spaces related to the Stokes problem and L p ? L q -type estimates for the corresponding semigroup.  相似文献   

15.
Zhu  Weipeng  Zhao  Jihong 《Acta Appl Math》2019,163(1):157-184

In this paper, we investigate the space-time regularity of solutions to (1) the three dimensional incompressible Navier–Stokes equations for initial data \(u_{0}=(u_{0}^{h},u_{0}^{3}) \in \dot{B}_{p,r}^{ \frac{3}{p}-1} (\mathbb{R}^{3})\) with large initial vertical velocity component; and (2) the three dimensional incompressible magneto-hydrodynamic equations for initial datum \(u_{0}=(u_{0}^{h},u _{0}^{3})\in \dot{B}_{p,r}^{\frac{3}{p}-1} (\mathbb{R}^{3})\) with large initial vertical velocity component and \(b_{0}=(b_{0}^{h},b_{0}^{3}) \in \dot{B}_{p,r}^{\frac{3}{p}-1} (\mathbb{R}^{3})\) with large initial vertical magnetic field component.

  相似文献   

16.
For any \(p\in (0,\,1]\), let \(H^{\Phi _p}(\mathbb {R}^n)\) be the Musielak–Orlicz Hardy space associated with the Musielak–Orlicz growth function \(\Phi _p\), defined by setting, for any \(x\in \mathbb {R}^n\) and \(t\in [0,\,\infty )\),
$$\begin{aligned}&\Phi _{p}(x,\,t)\\&\quad := {\left\{ \begin{array}{ll} \displaystyle \frac{t}{\log {(e+t)}+[t(1+|x|)^n]^{1-p}}&{} \quad \text {when}\ n(1/p-1)\notin \mathbb N \cup \{0\},\\ \displaystyle \frac{t}{\log (e+t)+[t(1+|x|)^n]^{1-p}[\log (e+|x|)]^p}&{} \quad \text {when}\ n(1/p-1)\in \mathbb N\cup \{0\}, \end{array}\right. } \end{aligned}$$
which is the sharp target space of the bilinear decomposition of the product of the Hardy space \(H^p(\mathbb {R}^n)\) and its dual. Moreover, \(H^{\Phi _1}(\mathbb {R}^n)\) is the prototype appearing in the real-variable theory of general Musielak–Orlicz Hardy spaces. In this article, the authors find a new structure of the space \(H^{\Phi _p}(\mathbb {R}^n)\) by showing that, for any \(p\in (0,\,1]\), \(H^{\Phi _p}(\mathbb {R}^n)=H^{\phi _0}(\mathbb {R}^n) +H_{W_p}^p({{{\mathbb {R}}}^n})\) and, for any \(p\in (0,\,1)\), \(H^{\Phi _p}(\mathbb {R}^n)=H^{1}(\mathbb {R}^n) +H_{W_p}^p({{{\mathbb {R}}}^n})\), where \(H^1(\mathbb {R}^n)\) denotes the classical real Hardy space, \(H^{\phi _0}({{{\mathbb {R}}}^n})\) the Orlicz–Hardy space associated with the Orlicz function \(\phi _0(t):=t/\log (e+t)\) for any \(t\in [0,\infty )\), and \(H_{W_p}^p(\mathbb {R}^n)\) the weighted Hardy space associated with certain weight function \(W_p(x)\) that is comparable to \(\Phi _p(x,1)\) for any \(x\in \mathbb {R}^n\). As an application, the authors further establish an interpolation theorem of quasilinear operators based on this new structure.
  相似文献   

17.

We study the problem of recovering an unknown signal \({\varvec{x}}\) given measurements obtained from a generalized linear model with a Gaussian sensing matrix. Two popular solutions are based on a linear estimator \(\hat{\varvec{x}}^\mathrm{L}\) and a spectral estimator \(\hat{\varvec{x}}^\mathrm{s}\). The former is a data-dependent linear combination of the columns of the measurement matrix, and its analysis is quite simple. The latter is the principal eigenvector of a data-dependent matrix, and a recent line of work has studied its performance. In this paper, we show how to optimally combine \(\hat{\varvec{x}}^\mathrm{L}\) and \(\hat{\varvec{x}}^\mathrm{s}\). At the heart of our analysis is the exact characterization of the empirical joint distribution of \(({\varvec{x}}, \hat{\varvec{x}}^\mathrm{L}, \hat{\varvec{x}}^\mathrm{s})\) in the high-dimensional limit. This allows us to compute the Bayes-optimal combination of \(\hat{\varvec{x}}^\mathrm{L}\) and \(\hat{\varvec{x}}^\mathrm{s}\), given the limiting distribution of the signal \({\varvec{x}}\). When the distribution of the signal is Gaussian, then the Bayes-optimal combination has the form \(\theta \hat{\varvec{x}}^\mathrm{L}+\hat{\varvec{x}}^\mathrm{s}\) and we derive the optimal combination coefficient. In order to establish the limiting distribution of \(({\varvec{x}}, \hat{\varvec{x}}^\mathrm{L}, \hat{\varvec{x}}^\mathrm{s})\), we design and analyze an approximate message passing algorithm whose iterates give \(\hat{\varvec{x}}^\mathrm{L}\) and approach \(\hat{\varvec{x}}^\mathrm{s}\). Numerical simulations demonstrate the improvement of the proposed combination with respect to the two methods considered separately.

  相似文献   

18.
We study hypercyclicity of the Toeplitz operators in the Hardy space \({H^{2}(\mathbb{D})}\) with symbols of the form \({p(\overline{z}) + \varphi(z)}\), where \({p}\) is a polynomial and \({\varphi \in H^{\infty}(\mathbb{D})}\). We find both necessary and sufficient conditions for hypercyclicity which almost coincide in the case when deg \({p =1}\).  相似文献   

19.
In this work we consider the Dunkl operator on the real line, defined by $$ {\cal D}_kf(x):=f'(x)+k\dfrac{f(x)-f(-x)}{x},\,\,k\geq0. $$ We define and study Dunkl–Sobolev spaces \(L^p_{n,k}(\mathbb{R})\) , Dunkl–Sobolev spaces \({\cal L}^p_{\alpha,k}(\mathbb{R})\) of positive fractional order and generalized Dunkl–Lipschitz spaces \(\wedge^k_{\alpha,p,q}(\mathbb{R})\) . We provide characterizations of these spaces and we give some connection between them.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号