首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In this paper we initiate a quantitative study of strong proximinality. We define a quantity ϵ(x, t) which we call as modulus of strong proximinality and show that the metric projection onto a strongly proximinal subspace Y of a Banach space X is continuous at x if and only if ϵ(x, t) is continuous at x whenever t > 0. The best possible estimate of ϵ(x, t) characterizes spaces with 1 \frac121 \frac{1}{2} ball property. Estimates of ϵ(x, t) are obtained for subspaces of uniformly convex spaces and of strongly proximinal subspaces of finite codimension in C(K).  相似文献   

2.
In this paper, we show a relationship between strictly convexity of type (I) and (II) defined by Takahashi and Talman, and we prove that any uniformly convex metric space is strictly convex of type (II). Continuity of the convex structure is also shown on a compact domain. Then, we prove the existence of a minimum point of a convex, lower semicontinuous and d-coercive function defined on a nonempty closed convex subset of a complete uniformly convex metric space. By using this property, we prove fixed point theorems for (α, β)-generalized hybrid mappings in uniformly convex metric spaces. Using this result, we also obtain a common fixed point theorem for a countable commutative family of (α, β)-generalized hybrid mappings in uniformly convex metric spaces. Finally, we establish strong convergence of a Mann type iteration to a fixed point of (α, β)-generalized hybrid mapping in a uniformly convex metric space without assuming continuity of convex structure. Our results can be applied to obtain the existence and convergence theorems for (α, β)-generalized hybrid mappings in Hilbert spaces, uniformly convex Banach spaces and CAT(0) spaces.  相似文献   

3.
We say that a normed linear space X is a R(1) space if the following holds: If Y is a closed subspace of finite codimension in X and every hyperplane containing Y is proximinal in X then Y is proximinal in X. In this paper we show that any closed subspace of c0 is a R(1) space.  相似文献   

4.
A sufficient condition is given when a subspaceLL 1(μ,X) of the space of Bochner integrable function, defined on a finite and positive measure space (S, Φ, μ) with values in a Banach spaceX, is locally uniformly convex renormable in terms of the integrable evaluations {∫ A fdμ;f∈L}. This shows the lifting property thatL 1(μ,X) is renormable if and only ifX is, and indicates a large class of renormable subspaces even ifX does not admit and equivalent locally uniformly convex norm.  相似文献   

5.
The main purpose of this paper is to settle the following problem concerning a product formula for the Tychonoff functor τ, by introducing the notion of w-compact spaces: Characterize a topological space X such that τ(X×Y)=τ(Xτ(Y) for any topological space Y. We also study the properties of w-compact spaces, and it is proved that, for any family {Xα} of w-compact spaces, the product ΠXα is also w-compact and τ(ΠXα)=Πτ(Xα).  相似文献   

6.
A local dual of a Banach space X is a closed subspace of X that satisfies the properties that the principle of local reflexivity assigns to X as a subspace of X∗∗. We show that, for every ordinal 1?α?ω1, the spaces Bα[0,1] of bounded Baire functions of class α are local dual spaces of the space M[0,1] of all Borel measures. As a consequence, we derive that each annihilator Bα[0,1] is the kernel of a norm-one projection.  相似文献   

7.
A convexity on a set X is a family of subsets of X which contains the whole space and the empty set as well as the singletons and which is closed under arbitrary intersections and updirected unions. A uniform convex space is a uniform topological space endowed with a convexity for which the convex hull operator is uniformly continuous. Uniform convex spaces with homotopically trivial polytopes (convex hulls of finite sets) are absolute extensors for the class of metric spaces; if they are completely metrizable then a continuous selection theorem à la Michael holds. Upper semicontinuous maps have approximate selections and fixed points, under the usual assumptions.  相似文献   

8.
A metric space X is straight if for each finite cover of X by closed sets, and for each real valued function f on X, if f is uniformly continuous on each set of the cover, then f is uniformly continuous on the whole of X. The straight spaces have been studied in [A. Berarducci, D. Dikranjan, J. Pelant, An additivity theorem for uniformly continuous functions, Topology and its Applications 146-147 (2005) 339-352], which contains characterization of the straight spaces within the class of the locally connected spaces (they are the uniformly locally connected ones) and the class of the totally disconnected spaces (they coincide with the totally disconnected Atsuji spaces). We show that the completion of a straight space is straight and we characterize the dense straight subspaces of a straight space. In order to clarify further the relation between straightness and the level of local connectedness of the space we introduce two more intermediate properties between straightness and uniform local connectedness and we give various examples to distinguish them. One of these properties coincides with straightness for complete spaces and provides in this way a useful characterization of complete straight spaces in terms of the behaviour of the quasi-components of the space.  相似文献   

9.
Enflo (1969) [4] constructed a countable metric space that may not be uniformly embedded into any metric space of positive generalized roundness. Dranishnikov, Gong, Lafforgue and Yu (2002) [3] modified Enflo?s example to construct a locally finite metric space that may not be coarsely embedded into any Hilbert space. In this paper we meld these two examples into one simpler construction. The outcome is a locally finite metric space (Z,ζ) which is strongly non-embeddable in the sense that it may not be embedded uniformly or coarsely into any metric space of non-zero generalized roundness. Moreover, we show that both types of embedding may be obstructed by a common recursive principle. It follows from our construction that any metric space which is Lipschitz universal for all locally finite metric spaces may not be embedded uniformly or coarsely into any metric space of non-zero generalized roundness. Our construction is then adapted to show that the group Zω=0Z admits a Cayley graph which may not be coarsely embedded into any metric space of non-zero generalized roundness. Finally, for each p?0 and each locally finite metric space (Z,d), we prove the existence of a Lipschitz injection f:Z?p.  相似文献   

10.
Let X be a Banach space and ψ a continuous convex function on [0,1] satisfying certain conditions. Let XψX be the ψ-direct sum of X. In this note, we characterize the strict convexity, uniform convexity and uniformly non-squareness of Banach spaces using ψ-direct sums, which extends the well-known characterization of these spaces.  相似文献   

11.
We show that the isometry groups of Lip(X,d) and lip(X,dα) with α∈(0,1), for a compact metric space (X,d), are algebraically reflexive. We also prove that the sets of isometric reflections and generalized bi-circular projections on such spaces are algebraically reflexive. In order to achieve this, we characterize generalized bi-circular projections on these spaces.  相似文献   

12.
The aim of this paper is to study Birkhoff integrability for multi-valued maps , where (Ω,Σ,μ) is a complete finite measure space, X is a Banach space and cwk(X) is the family of all non-empty convex weakly compact subsets of X. It is shown that the Birkhoff integral of F can be computed as the limit for the Hausdorff distance in cwk(X) of a net of Riemann sums ∑nμ(An)F(tn). We link Birkhoff integrability with Debreu integrability, a notion introduced to replace sums associated to correspondences when studying certain models in Mathematical Economics. We show that each Debreu integrable multi-valued function is Birkhoff integrable and that each Birkhoff integrable multi-valued function is Pettis integrable. The three previous notions coincide for finite dimensional Banach spaces and they are different even for bounded multi-valued functions when X is infinite dimensional and X∗ is assumed to be separable. We show that when F takes values in the family of all non-empty convex norm compact sets of a separable Banach space X, then F is Pettis integrable if, and only if, F is Birkhoff integrable; in particular, these Pettis integrable F's can be seen as single-valued Pettis integrable functions with values in some other adequate Banach space. Incidentally, to handle some of the constructions needed we prove that if X is an Asplund Banach space, then cwk(X) is separable for the Hausdorff distance if, and only if, X is finite dimensional.  相似文献   

13.
Let X and Y be Banach spaces and ψ a continuous convex function on the unit interval [0,1] satisfying certain conditions. Let XψY be the direct sum of X and Y equipped with the associated norm with ψ. We show that XψY is uniformly convex if and only if X,Y are uniformly convex and ψ is strictly convex. As a corollary we obtain that the ?p,q-direct sum (not p=q=1 nor ∞), is uniformly convex if and only if X,Y are, where ?p,q is the Lorentz sequence space. These results extend the well-known fact for the ?p-sum . Some other examples are also presented.  相似文献   

14.
15.
Making extensive use of small transfinite topological dimension trind, we ascribe to every metric space X an ordinal number (or −1 or Ω) tHD(X), and we call it the transfinite Hausdorff dimension of X. This ordinal number shares many common features with Hausdorff dimension. It is monotone with respect to subspaces, it is invariant under bi-Lipschitz maps (but in general not under homeomorphisms), in fact like Hausdorff dimension, it does not increase under Lipschitz maps, and it also satisfies the intermediate dimension property (Theorem 2.7). The primary goal of transfinite Hausdorff dimension is to classify metric spaces with infinite Hausdorff dimension. Indeed, if tHD(X)?ω0, then HD(X)=+∞. We prove that tHD(X)?ω1 for every separable metric space X, and, as our main theorem, we show that for every ordinal number α<ω1 there exists a compact metric space Xα (a subspace of the Hilbert space l2) with tHD(Xα)=α and which is a topological Cantor set, thus of topological dimension 0. In our proof we develop a metric version of Smirnov topological spaces and we establish several properties of transfinite Hausdorff dimension, including its relations with classical Hausdorff dimension.  相似文献   

16.
Assume that the unit spheres of Banach spaces X and Y are uniformly homeomorphic.Then we prove that all unit spheres of the Lebesgue–Bochner function spaces L_p(μ, X) and L_q(μ, Y)are mutually uniformly homeomorphic where 1 ≤ p, q ∞. As its application, we show that if a Banach space X has Property H introduced by Kasparov and Yu, then the space L_p(μ, X), 1 ≤ p ∞,also has Property H.  相似文献   

17.
In the present paper, we study conditions under which the metric projection of a polyhedral Banach space X onto a closed subspace is Hausdorff lower or upper semicontinuous. For example, we prove that if X satisfies (∗) (a geometric property stronger than polyhedrality) and YX is any proximinal subspace, then the metric projection PY is Hausdorff continuous and Y is strongly proximinal (i.e., if {yn}⊂Y, xX and , then ).One of the main results of a different nature is the following: if X satisfies (∗) and YX is a closed subspace of finite codimension, then the following conditions are equivalent: (a) Y is strongly proximinal; (b) Y is proximinal; (c) each element of Y attains its norm. Moreover, in this case the quotient X/Y is polyhedral.The final part of the paper contains examples illustrating the importance of some hypotheses in our main results.  相似文献   

18.
The goal of this article is to study the relations among monotonicity properties of real Banach lattices and the corresponding convexity properties in the complex Banach lattices. We introduce the moduli of monotonicity of Banach lattices. We show that a Banach lattice E is uniformly monotone if and only if its complexification EC is uniformly complex convex. We also prove that a uniformly monotone Banach lattice has finite cotype. In particular, we show that a Banach lattice is of cotype q for some 2?q<∞ if and only if there is an equivalent lattice norm under which it is uniformly monotone and its complexification is q-uniformly PL-convex. We also show that a real Köthe function space E is strictly (respectively uniformly) monotone and a complex Banach space X is strictly (respectively uniformly) complex convex if and only if Köthe-Bochner function space E(X) is strictly (respectively uniformly) complex convex.  相似文献   

19.
We discuss computability properties of the set PG(x) of elements of best approximation of some point xX by elements of GX in computable Banach spaces X. It turns out that for a general closed set G, given by its distance function, we can only obtain negative information about PG(x) as a closed set. In the case that G is finite-dimensional, one can compute negative information on PG(x) as a compact set. This implies that one can compute the point in PG(x) whenever it is uniquely determined. This is also possible for a wider class of subsets G, given that one imposes additionally convexity properties on the space. If the Banach space X is computably uniformly convex and G is convex, then one can compute the uniquely determined point in PG(x). We also discuss representations of finite-dimensional subspaces of Banach spaces and we show that a basis representation contains the same information as the representation via distance functions enriched by the dimension. Finally, we study computability properties of the dimension and the codimension map and we show that for finite-dimensional spaces X the dimension is computable, given the distance function of the subspace.  相似文献   

20.
In order to find metric spaces X for which the algebra Lip(X) of bounded Lipschitz functions on X determines the Lipschitz structure of X, we introduce the class of small-determined spaces. We show that this class includes precompact and quasi-convex metric spaces. We obtain several metric characterizations of this property, as well as some other characterizations given in terms of the uniform approximation and the extension of uniformly continuous functions. In particular we show that X is small-determined if and only if every uniformly continuous real function on X can be uniformly approximated by Lipschitz functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号