首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Let \(\mathcal {R}\) be a prime ring, \(\mathcal {Z(R)}\) its center, \(\mathcal {C}\) its extended centroid, \(\mathcal {L}\) a Lie ideal of \(\mathcal {R}, \mathcal {F}\) a generalized skew derivation associated with a skew derivation d and automorphism \(\alpha \). Assume that there exist \(t\ge 1\) and \(m,n\ge 0\) fixed integers such that \( vu = u^m\mathcal {F}(uv)^tu^n\) for all \(u,v \in \mathcal {L}\). Then it is shown that either \(\mathcal {L}\) is central or \(\mathrm{char}(\mathcal {R})=2, \mathcal {R}\subseteq \mathcal {M}_2(\mathcal {C})\), the ring of \(2\times 2\) matrices over \(\mathcal {C}, \mathcal {L}\) is commutative and \(u^2\in \mathcal {Z(R)}\), for all \(u\in \mathcal {L}\). In particular, if \(\mathcal {L}=[\mathcal {R,R}]\), then \(\mathcal {R}\) is commutative.  相似文献   

3.
Let \({\mathcal {M}}_{mn}={\mathcal {M}}_{mn}({\mathbb {F}})\) denote the set of all \(m\times n\) matrices over a field \({\mathbb {F}}\), and fix some \(n\times m\) matrix \(A\in {\mathcal {M}}_{nm}\). An associative operation \(\star \) may be defined on \({\mathcal {M}}_{mn}\) by \(X\star Y=XAY\) for all \(X,Y\in {\mathcal {M}}_{mn}\), and the resulting sandwich semigroup is denoted \({\mathcal {M}}_{mn}^A={\mathcal {M}}_{mn}^A({\mathbb {F}})\). These semigroups are closely related to Munn rings, which are fundamental tools in the representation theory of finite semigroups. We study \({\mathcal {M}}_{mn}^A\) as well as its subsemigroups \(\hbox {Reg}({\mathcal {M}}_{mn}^A)\) and \({\mathcal {E}}_{mn}^A\) (consisting of all regular elements and products of idempotents, respectively), and the ideals of \(\hbox {Reg}({\mathcal {M}}_{mn}^A)\). Among other results, we characterise the regular elements; determine Green’s relations and preorders; calculate the minimal number of matrices (or idempotent matrices, if applicable) required to generate each semigroup we consider; and classify the isomorphisms between finite sandwich semigroups \({\mathcal {M}}_{mn}^A({\mathbb {F}}_1)\) and \({\mathcal {M}}_{kl}^B({\mathbb {F}}_2)\). Along the way, we develop a general theory of sandwich semigroups in a suitably defined class of partial semigroups related to Ehresmann-style “arrows only” categories; we hope this framework will be useful in studies of sandwich semigroups in other categories. We note that all our results have applications to the variants \({\mathcal {M}}_n^A\) of the full linear monoid \({\mathcal {M}}_n\) (in the case \(m=n\)), and to certain semigroups of linear transformations of restricted range or kernel (in the case that \(\hbox {rank}(A)\) is equal to one of mn).  相似文献   

4.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

5.
Fix sets X and Y, and write \(\mathcal P\mathcal T_{XY}\) for the set of all partial functions \(X\rightarrow Y\). Fix a partial function \({a:Y\rightarrow X}\), and define the operation \(\star _a\) on \(\mathcal P\mathcal T_{XY}\) by \(f\star _ag=fag\) for \(f,g\in \mathcal P\mathcal T_{XY}\). The sandwich semigroup \((\mathcal P\mathcal T_{XY},\star _a)\) is denoted \(\mathcal P\mathcal T_{XY}^a\). We apply general results from Part I to thoroughly describe the structural and combinatorial properties of \(\mathcal P\mathcal T_{XY}^a\), as well as its regular and idempotent-generated subsemigroups, \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). After describing regularity, stability and Green’s relations and preorders, we exhibit \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) as a pullback product of certain regular subsemigroups of the (non-sandwich) partial transformation semigroups \(\mathcal P\mathcal T_X\) and \(\mathcal P\mathcal T_Y\), and as a kind of “inflation” of \(\mathcal P\mathcal T_A\), where A is the image of the sandwich element a. We also calculate the rank (minimal size of a generating set) and, where appropriate, the idempotent rank (minimal size of an idempotent generating set) of \(\mathcal P\mathcal T_{XY}^a\)\({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). The same program is also carried out for sandwich semigroups of totally defined functions and for injective partial functions. Several corollaries are obtained for various (non-sandwich) semigroups of (partial) transformations with restricted image, domain and/or kernel.  相似文献   

6.
Let \({\mathcal {N}}_m\) be the group of \(m\times m\) upper triangular real matrices with all the diagonal entries 1. Then it is an \((m-1)\)-step nilpotent Lie group, diffeomorphic to \({\mathbb {R}}^{\frac{1}{2} m(m-1)}\). It contains all the integer matrices as a lattice \(\Gamma _m\). The automorphism group of \({\mathcal {N}}_m \ (m\ge 4)\) turns out to be extremely small. In fact, \(\mathrm {Aut}({\mathcal {N}})=\mathcal {I} \rtimes \mathrm {Out}({\mathcal {N}})\), where \(\mathcal {I}\) is a connected, simply connected nilpotent Lie group, and \(\mathrm {Out}({\mathcal {N}})={{\tilde{K}}}={(\mathbb {R}^*)^{m-1}\rtimes \mathbb {Z}_2}\). With a nice left-invariant Riemannian metric on \({\mathcal {N}}\), the isometry group is \(\mathrm {Isom}({\mathcal {N}})= {\mathcal {N}} \rtimes K\), where \(K={(\mathbb {Z}_2)^{m-1}\rtimes \mathbb {Z}_2}\subset {{\tilde{K}}}\) is a maximal compact subgroup of \(\mathrm {Aut}({\mathcal {N}})\). We prove that, for odd \(m\ge 4\), there is no infra-nilmanifold which is essentially covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\). For \(m=2n\ge 4\) (even), there is a unique infra-nilmanifold which is essentially (and doubly) covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\).  相似文献   

7.
Let f be a \(C^{1+\alpha }\) diffeomorphism of a compact Riemannian manifold and \(\mu \) an ergodic hyperbolic measure with positive entropy. We prove that for every continuous potential \(\phi \) there exists a sequence of basic sets \(\Omega _n\) such that the topological pressure \(P(f|\Omega _n,\phi )\) converges to the free energy \(P_{\mu }(\phi ) = h(\mu ) + \int \phi {d\mu }\). We also prove that for a suitable class of potentials \(\phi \) there exists a sequence of basic sets \(\Omega _n\) such that \(P(f|\Omega _n,\phi ) \rightarrow P(\phi )\).  相似文献   

8.
In this paper we consider the compactness of \(\beta \)-symplectic critical surfaces in a Kähler surface. Let M be a compact Kähler surface and \(\Sigma _i\subset M\) be a sequence of closed \(\beta _i\)-symplectic critical surfaces with \(\beta _i\rightarrow \beta _0\in (0,\infty )\). Suppose the quantity \(\int _{\Sigma _i}\frac{1}{\cos ^q\alpha _i}d\mu _i\) (for some \(q>4\)) and the genus of \(\Sigma _{i}\) are bounded, then there exists a finite set of points \({{\mathcal {S}}}\subset M\) and a subsequence \(\Sigma _{i'}\) which converges uniformly in the \(C^l\) topology (for any \(l<\infty \)) on compact subsets of \(M\backslash {{\mathcal {S}}}\) to a \(\beta _0\)-symplectic critical surface \(\Sigma \subset M\), each connected component of \(\Sigma \setminus {{\mathcal {S}}}\) can be extended smoothly across \({{\mathcal {S}}}\).  相似文献   

9.
We continue the study of stability of solving the interior problem of tomography. The starting point is the Gelfand–Graev formula, which converts the tomographic data into the finite Hilbert transform (FHT) of an unknown function f along a collection of lines. Pick one such line, call it the x-axis, and assume that the function to be reconstructed depends on a one-dimensional argument by restricting f to the x-axis. Let \(I_1\) be the interval where f is supported, and \(I_2\) be the interval where the Hilbert transform of f can be computed using the Gelfand–Graev formula. The equation to be solved is \(\left. {\mathcal {H}}_1 f=g\right| _{I_2}\), where \({\mathcal {H}}_1\) is the FHT that integrates over \(I_1\) and gives the result on \(I_2\), i.e. \({\mathcal {H}}_1: L^2(I_1)\rightarrow L^2(I_2)\). In the case of complete data, \(I_1\subset I_2\), and the classical FHT inversion formula reconstructs f in a stable fashion. In the case of interior problem (i.e., when the tomographic data are truncated), \(I_1\) is no longer a subset of \(I_2\), and the inversion problems becomes severely unstable. By using a differential operator L that commutes with \({\mathcal {H}}_1\), one can obtain the singular value decomposition of \({\mathcal {H}}_1\). Then the rate of decay of singular values of \({\mathcal {H}}_1\) is the measure of instability of finding f. Depending on the available tomographic data, different relative positions of the intervals \(I_{1,2}\) are possible. The cases when \(I_1\) and \(I_2\) are at a positive distance from each other or when they overlap have been investigated already. It was shown that in both cases the spectrum of the operator \({\mathcal {H}}_1^*{\mathcal {H}}_1\) is discrete, and the asymptotics of its eigenvalues \(\sigma _n\) as \(n\rightarrow \infty \) has been obtained. In this paper we consider the case when the intervals \(I_1=(a_1,0)\) and \(I_2=(0,a_2)\) are adjacent. Here \(a_1 < 0 < a_2\). Using recent developments in the Titchmarsh–Weyl theory, we show that the operator L corresponding to two touching intervals has only continuous spectrum and obtain two isometric transformations \(U_1\), \(U_2\), such that \(U_2{\mathcal {H}}_1 U_1^*\) is the multiplication operator with the function \(\sigma (\lambda )\), \(\lambda \ge (a_1^2+a_2^2)/8\). Here \(\lambda \) is the spectral parameter. Then we show that \(\sigma (\lambda )\rightarrow 0\) as \(\lambda \rightarrow \infty \) exponentially fast. This implies that the problem of finding f is severely ill-posed. We also obtain the leading asymptotic behavior of the kernels involved in the integral operators \(U_1\), \(U_2\) as \(\lambda \rightarrow \infty \). When the intervals are symmetric, i.e. \(-a_1=a_2\), the operators \(U_1\), \(U_2\) are obtained explicitly in terms of hypergeometric functions.  相似文献   

10.
The spectral unit ball \(\Omega _n\) is the set of all \(n\times n\) matrices M with spectral radius less than 1. Let \(\pi (M) \in \mathbb {C}^n\) stand for the coefficients of the characteristic polynomial of a matrix M (up to signs), i.e. the elementary symmetric functions of its eigenvalues. The symmetrized polydisc is \({{\mathbb {G}}}_n:=\pi (\Omega _n)\). When investigating Nevanlinna–Pick problems for maps from the disk to the spectral ball, it is often useful to project the map to the symmetrized polydisc (for instance to obtain continuity results for the Lempert function): if \(\Phi \in {\mathrm {Hol}}(\mathbb {D}, \Omega _n)\), then \(\pi \circ \Phi \in {\mathrm {Hol}}(\mathbb {D}, {{\mathbb {G}}}_n)\). Given a map \(\varphi \in {\mathrm {Hol}}(\mathbb {D}, {{\mathbb {G}}}_n)\), we are looking for necessary and sufficient conditions for this map to “lift through given matrices”, i.e. find \(\Phi \) as above so that \(\pi \circ \Phi = \varphi \) and \(\Phi (\alpha _j) = A_j\), \(1\le j \le N\). A natural necessary condition is \(\varphi (\alpha _j)=\pi (A_j)\), \(1\le j \le N\). When the matrices \(A_j\) are derogatory (i.e. do not admit a cyclic vector) new necessary conditions appear, involving derivatives of \(\varphi \) at the points \(\alpha _j\). We prove that those conditions are necessary and sufficient for a local lifting. We give a formula which performs the global lifting in small dimensions (\(n \le 5\)), and a counter-example to show that the formula fails in dimensions 6 and above.  相似文献   

11.
Given a simple digraph D on n vertices (with \(n\ge 2\)), there is a natural construction of a semigroup of transformations \(\langle D\rangle \). For any edge (ab) of D, let \(a\rightarrow b\) be the idempotent of rank \(n-1\) mapping a to b and fixing all vertices other than a; then, define \(\langle D\rangle \) to be the semigroup generated by \(a \rightarrow b\) for all \((a,b) \in E(D)\). For \(\alpha \in \langle D\rangle \), let \(\ell (D,\alpha )\) be the minimal length of a word in E(D) expressing \(\alpha \). It is well known that the semigroup \(\mathrm {Sing}_n\) of all transformations of rank at most \(n-1\) is generated by its idempotents of rank \(n-1\). When \(D=K_n\) is the complete undirected graph, Howie and Iwahori, independently, obtained a formula to calculate \(\ell (K_n,\alpha )\), for any \(\alpha \in \langle K_n\rangle = \mathrm {Sing}_n\); however, no analogous non-trivial results are known when \(D \ne K_n\). In this paper, we characterise all simple digraphs D such that either \(\ell (D,\alpha )\) is equal to Howie–Iwahori’s formula for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {fix}(\alpha )\) for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {rk}(\alpha )\) for all \(\alpha \in \langle D\rangle \). We also obtain bounds for \(\ell (D,\alpha )\) when D is an acyclic digraph or a strong tournament (the latter case corresponds to a smallest generating set of idempotents of rank \(n-1\) of \(\mathrm {Sing}_n\)). We finish the paper with a list of conjectures and open problems.  相似文献   

12.
Let \(\Omega \subset {\mathbb {C}}\) be an open subset and let \({\mathcal {F}}\) be a space of functions defined on \(\Omega \). \({\mathcal {F}}\) is said to have the local maximum modulus property if: for every \(f\in {\mathcal {F}},p_0\in \Omega ,\) and for every sufficiently small domain \(D\subset \Omega ,\) with \(p_0\in D,\) it holds true that \(\max _{z\in \overline{D}}\left| f(z)\right| = \max _{z\in \Sigma \cup \partial D}\left| f(z)\right| ,\) where \(\Sigma \subset \Omega \) denotes the set of points at which \(\left| f\right| \) attains strict local maximum. This property fails for \({\mathcal {F}}=C^{\infty }.\) We verify it however for the set of complex-valued functions whose real and imaginary parts are real analytic. We show by example that the property cannot be improved upon whenever \({\mathcal {F}}\) is the set of n-analytic functions on \(\Omega \), \(n\ge 2,\) in the sense that locality cannot be removed as a condition and independently \(\Sigma \) cannot be removed from the conclusion.  相似文献   

13.
We consider a branching random walk on \({\mathbb {R}}\) with a stationary and ergodic environment \(\xi =(\xi _n)\) indexed by time \(n\in {\mathbb {N}}\). Let \(Z_n\) be the counting measure of particles of generation n and \(\tilde{Z}_n(t)=\int \mathrm{e}^{tx}Z_n(\mathrm{d}x)\) be its Laplace transform. We show the \(L^p\) convergence rate and the uniform convergence of the martingale \(\tilde{Z}_n(t)/{\mathbb {E}}[\tilde{Z}_n(t)|\xi ]\), and establish a moderate deviation principle for the measures \(Z_n\).  相似文献   

14.
Graham, Hamada, Kohr and Kohr studied the normalized time \(T\) reachable families \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) of the Loewner differential equation, which are generated by the Carathéodory mappings with values in a subfamily \(\Omega \) of the Carathéodory family \({\mathcal {N}}_A\) for the Euclidean unit ball \({\mathbb {B}}^n\), where \(A\) is a linear operator with \(k_+(A)<2m(A)\) (\(k_+(A)\) is the Lyapunov index of \(A\) and \(m(A)=\min \{\mathfrak {R}\left\langle Az,z\right\rangle \big |z\in {\mathbb {C}}^n,\Vert z\Vert =1\}\)). They obtained some compactness and density results, as generalizations of related results due to Roth, and conjectured that if \(\Omega \) is compact and convex, then \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) is compact and \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},ex\,\Omega )\) is dense in \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\), where \(ex\,\Omega \) denotes the corresponding set of extreme points and \(T\in [0,\infty ]\). We confirm this, by embedding the Carathéodory mappings in a suitable Bochner space.  相似文献   

15.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

16.
A bounded linear operator T acting on a Hilbert space is said to have orthogonality property \(\mathcal {O}\) if the subspaces \(\ker (T-\alpha )\) and \(\ker (T-\beta )\) are orthogonal for all \(\alpha , \beta \in \sigma _p(T)\) with \(\alpha \ne \beta \). In this paper, the authors investigate the compact perturbations of operators with orthogonality property \(\mathcal {O}\). We give a sufficient and necessary condition to determine when an operator T has the following property: for each \(\varepsilon >0\), there exists \(K\in \mathcal {K(H)}\) with \(\Vert K\Vert <\varepsilon \) such that \(T+K\) has orthogonality property \(\mathcal {O}\). Also, we study the stability of orthogonality property \(\mathcal {O}\) under small compact perturbations and analytic functional calculus.  相似文献   

17.
Let \(\bar{p}(n)\) denote the number of overpartitions of \(n\). Recently, Fortin–Jacob–Mathieu and Hirschhorn–Sellers independently obtained 2-, 3- and 4-dissections of the generating function for \(\bar{p}(n)\) and derived a number of congruences for \(\bar{p}(n)\) modulo 4, 8 and 64 including \(\bar{p}(8n+7)\equiv 0 \pmod {64}\) for \(n\ge 0\). In this paper, we give a 16-dissection of the generating function for \(\bar{p}(n)\) modulo 16 and show that \(\bar{p}(16n+14)\equiv 0\pmod {16}\) for \(n\ge 0\). Moreover, using the \(2\)-adic expansion of the generating function for \(\bar{p}(n)\) according to Mahlburg, we obtain that \(\bar{p}(\ell ^2n+r\ell )\equiv 0\pmod {16}\), where \(n\ge 0\), \(\ell \equiv -1\pmod {8}\) is an odd prime and \(r\) is a positive integer with \(\ell \not \mid r\). In particular, for \(\ell =7\) and \(n\ge 0\), we get \(\bar{p}(49n+7)\equiv 0\pmod {16}\) and \(\bar{p}(49n+14)\equiv 0\pmod {16}\). We also find four congruence relations: \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n) \pmod {16}\) for \(n\ge 0\), \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {32}\) where \(n\) is not a square of an odd positive integer, \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {64}\) for \(n\not \equiv 1,2,5\pmod {8}\) and \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {128}\) for \(n\equiv 0\pmod {4}\).  相似文献   

18.
The partition algebra \(\mathsf {P}_k(n)\) and the symmetric group \(\mathsf {S}_n\) are in Schur–Weyl duality on the k-fold tensor power \(\mathsf {M}_n^{\otimes k}\) of the permutation module \(\mathsf {M}_n\) of \(\mathsf {S}_n\), so there is a surjection \(\mathsf {P}_k(n) \rightarrow \mathsf {Z}_k(n) := \mathsf {End}_{\mathsf {S}_n}(\mathsf {M}_n^{\otimes k})\), which is an isomorphism when \(n \ge 2k\). We prove a dimension formula for the irreducible modules of the centralizer algebra \(\mathsf {Z}_k(n)\) in terms of Stirling numbers of the second kind. Via Schur–Weyl duality, these dimensions equal the multiplicities of the irreducible \(\mathsf {S}_n\)-modules in \(\mathsf {M}_n^{\otimes k}\). Our dimension expressions hold for any \(n \ge 1\) and \(k\ge 0\). Our methods are based on an analog of Frobenius reciprocity that we show holds for the centralizer algebras of arbitrary finite groups and their subgroups acting on a finite-dimensional module. This enables us to generalize the above result to various analogs of the partition algebra including the centralizer algebra for the alternating group acting on \(\mathsf {M}_n^{\otimes k}\) and the quasi-partition algebra corresponding to tensor powers of the reflection representation of \(\mathsf {S}_n\).  相似文献   

19.
We introduce and study the first-order Generic Vopěnka’s Principle, which states that for every definable proper class of structures \(\mathcal {C}\) of the same type, there exist \(B\ne A\) in \(\mathcal {C}\) such that B elementarily embeds into A in some set-forcing extension. We show that, for \(n\ge 1\), the Generic Vopěnka’s Principle fragment for \(\Pi _n\)-definable classes is equiconsistent with a proper class of n-remarkable cardinals. The n-remarkable cardinals hierarchy for \(n\in \omega \), which we introduce here, is a natural generic analogue for the \(C^{(n)}\)-extendible cardinals that Bagaria used to calibrate the strength of the first-order Vopěnka’s Principle in Bagaria (Arch Math Logic 51(3–4):213–240, 2012). Expanding on the theme of studying set theoretic properties which assert the existence of elementary embeddings in some set-forcing extension, we introduce and study the weak Proper Forcing Axiom, \(\mathrm{wPFA}\). The axiom \(\mathrm{wPFA}\) states that for every transitive model \(\mathcal M\) in the language of set theory with some \(\omega _1\)-many additional relations, if it is forced by a proper forcing \(\mathbb P\) that \(\mathcal M\) satisfies some \(\Sigma _1\)-property, then V has a transitive model \(\bar{\mathcal M}\), satisfying the same \(\Sigma _1\)-property, and in some set-forcing extension there is an elementary embedding from \(\bar{\mathcal M}\) into \(\mathcal M\). This is a weakening of a formulation of \(\mathrm{PFA}\) due to Claverie and Schindler (J Symb Logic 77(2):475–498, 2012), which asserts that the embedding from \(\bar{\mathcal M}\) to \(\mathcal M\) exists in V. We show that \(\mathrm{wPFA}\) is equiconsistent with a remarkable cardinal. Furthermore, the axiom \(\mathrm{wPFA}\) implies \(\mathrm{PFA}_{\aleph _2}\), the Proper Forcing Axiom for antichains of size at most \(\omega _2\), but it is consistent with \(\square _\kappa \) for all \(\kappa \ge \omega _2\), and therefore does not imply \(\mathrm{PFA}_{\aleph _3}\).  相似文献   

20.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号