首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
Let \({\mathcal {N}}_m\) be the group of \(m\times m\) upper triangular real matrices with all the diagonal entries 1. Then it is an \((m-1)\)-step nilpotent Lie group, diffeomorphic to \({\mathbb {R}}^{\frac{1}{2} m(m-1)}\). It contains all the integer matrices as a lattice \(\Gamma _m\). The automorphism group of \({\mathcal {N}}_m \ (m\ge 4)\) turns out to be extremely small. In fact, \(\mathrm {Aut}({\mathcal {N}})=\mathcal {I} \rtimes \mathrm {Out}({\mathcal {N}})\), where \(\mathcal {I}\) is a connected, simply connected nilpotent Lie group, and \(\mathrm {Out}({\mathcal {N}})={{\tilde{K}}}={(\mathbb {R}^*)^{m-1}\rtimes \mathbb {Z}_2}\). With a nice left-invariant Riemannian metric on \({\mathcal {N}}\), the isometry group is \(\mathrm {Isom}({\mathcal {N}})= {\mathcal {N}} \rtimes K\), where \(K={(\mathbb {Z}_2)^{m-1}\rtimes \mathbb {Z}_2}\subset {{\tilde{K}}}\) is a maximal compact subgroup of \(\mathrm {Aut}({\mathcal {N}})\). We prove that, for odd \(m\ge 4\), there is no infra-nilmanifold which is essentially covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\). For \(m=2n\ge 4\) (even), there is a unique infra-nilmanifold which is essentially (and doubly) covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\).  相似文献   

2.
Let E be a Banach lattice on \({\mathbb {Z}}\) with order continuous norm. We show that for any function \(f = \{f_j\}_{j \in {\mathbb {Z}}}\) from the Hardy space \(\mathrm H_{\infty }\left( E \right) \) such that \(\delta \leqslant \Vert f (z)\Vert _E \leqslant 1\) for all z from the unit disk \({\mathbb {D}}\) there exists some solution \(g = \{g_j\}_{j \in {\mathbb {Z}}} \in \mathrm H_{\infty }\left( E' \right) \), \(\Vert g\Vert _{\mathrm H_{\infty }\left( E' \right) } \leqslant C_\delta \) of the Bézout equation \(\sum _j f_j g_j = 1\), also known as the vector-valued corona problem with data in \(\mathrm H_{\infty }\left( E \right) \).  相似文献   

3.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

4.
Let \(\mathrm{SM}_{2n}(S^1,\mathbb {R})\) be a set of stable Morse functions of an oriented circle such that the number of singular points is \(2n\in \mathbb {N}\) and the order of singular values satisfies the particular condition. For an orthogonal projection \(\pi :\mathbb {R}^2\rightarrow \mathbb {R}\), let \({\tilde{f}}_0\) and \({\tilde{f}}_1:S^1\rightarrow \mathbb {R}^2\) be embedding lifts of f. If there is an ambient isotopy \(\tilde{\varphi }_t:\mathbb {R}^2\rightarrow \mathbb {R}^2\) \((t\in [0,1])\) such that \({\pi \circ \tilde{\varphi }}_t(y_1,y_2)=y_1\) and \(\tilde{\varphi }_1\circ {\tilde{f}}_0={\tilde{f}}_1\), we say that \({\tilde{f}}_0\) and \({\tilde{f}}_1\) are height isotopic. We define a function \(I:\mathrm{SM}_{2n}(S^1,\mathbb {R})\rightarrow \mathbb {N}\) as follows: I(f) is the number of height isotopy classes of embeddings such that each rotation number is one. In this paper, we determine the maximal value of the function I equals the n-th Baxter number and the minimal value equals \(2^{n-1}\).  相似文献   

5.
We consider in a group \((G,\cdot )\) the ternary relation
$$\begin{aligned} \kappa := \{(\alpha , \beta , \gamma ) \in G^3 \ | \ \alpha \cdot \beta ^{-1} \cdot \gamma = \gamma \cdot \beta ^{-1} \cdot \alpha \} \end{aligned}$$
and show that \(\kappa \) is a ternary equivalence relation if and only if the set \( \mathfrak Z \) of centralizers of the group G forms a fibration of G (cf. Theorems 2, 3). Therefore G can be provided with an incidence structure
$$\begin{aligned} \mathfrak G:= \{\gamma \cdot Z \ | \ \gamma \in G , Z \in \mathfrak Z(G) \}. \end{aligned}$$
We study the automorphism group of \((G,\kappa )\), i.e. all permutations \(\varphi \) of the set G such that \( (\alpha , \beta , \gamma ) \in \kappa \) implies \((\varphi (\alpha ),\varphi (\beta ),\varphi (\gamma ))\in \kappa \). We show \(\mathrm{Aut}(G,\kappa )=\mathrm{Aut}(G,\mathfrak G)\), \(\mathrm{Aut} (G,\cdot ) \subseteq \mathrm{Aut}(G,\kappa )\) and if \( \varphi \in \mathrm{Aut}(G,\kappa )\) with \(\varphi (1)=1\) and \(\varphi (\xi ^{-1})= (\varphi (\xi ))^{-1}\) for all \(\xi \in G\) then \(\varphi \) is an automorphism of \((G,\cdot )\). This allows us to prove a representation theorem of \(\mathrm{Aut}(G,\kappa )\) (cf. Theorem 6) and that for \(\alpha \in G \) the maps
$$\begin{aligned} \tilde{\alpha }\ : \ G \rightarrow G;~ \xi \mapsto \alpha \cdot \xi ^{-1} \cdot \alpha \end{aligned}$$
of the corresponding reflection structure \((G, \widetilde{G})\) (with \( \tilde{G} := \{\tilde{\gamma }\ | \ \gamma \in G \}\)) are point reflections. If \((G ,\cdot )\) is uniquely 2-divisible and if for \(\alpha \in G\), \(\alpha ^{1\over 2}\) denotes the unique solution of \(\xi ^2=\alpha \) then with \(\alpha \odot \beta := \alpha ^{1\over 2} \cdot \beta \cdot \alpha ^{1\over 2}\), the pair \((G,\odot )\) is a K-loop (cf. Theorem 5).
  相似文献   

6.
Let F be an \(L^2\)-normalized Hecke Maaß cusp form for \(\Gamma _0(N) \subseteq {\mathrm{SL}}_{n}({\mathbb {Z}})\) with Laplace eigenvalue \(\lambda _F\). If \(\Omega \) is a compact subset of \(\Gamma _0(N)\backslash {\mathrm{PGL}}_n/\mathrm{PO}_{n}\), we show the bound \(\Vert F|_{\Omega }\Vert _{\infty } \ll _{ \Omega } N^{\varepsilon } \lambda _F^{n(n-1)/8 - \delta }\) for some constant \(\delta = \delta _n> 0\) depending only on n.  相似文献   

7.
We show that certain representations over fields with positive characteristic of groups having CAT\((0)\) fixed point property \(\mathrm{F}\mathcal {B}_{\widetilde{A}_n}\) have finite image. In particular, we obtain rigidity results for representations of the following groups: the special linear group over \({\mathbb {Z}}\), \({\mathrm{SL}}_k({\mathbb {Z}})\), the special automorphism group of a free group, \(\mathrm{SAut}(F_k)\), the mapping class group of a closed orientable surface, \(\mathrm{Mod}(\Sigma _g)\), and many other groups. In the case of characteristic zero, we show that low dimensional complex representations of groups having CAT\((0)\) fixed point property \(\mathrm{F}\mathcal {B}_{\widetilde{A}_n}\) have finite image if they always have compact closure.  相似文献   

8.
The spectral unit ball \(\Omega _n\) is the set of all \(n\times n\) matrices M with spectral radius less than 1. Let \(\pi (M) \in \mathbb {C}^n\) stand for the coefficients of the characteristic polynomial of a matrix M (up to signs), i.e. the elementary symmetric functions of its eigenvalues. The symmetrized polydisc is \({{\mathbb {G}}}_n:=\pi (\Omega _n)\). When investigating Nevanlinna–Pick problems for maps from the disk to the spectral ball, it is often useful to project the map to the symmetrized polydisc (for instance to obtain continuity results for the Lempert function): if \(\Phi \in {\mathrm {Hol}}(\mathbb {D}, \Omega _n)\), then \(\pi \circ \Phi \in {\mathrm {Hol}}(\mathbb {D}, {{\mathbb {G}}}_n)\). Given a map \(\varphi \in {\mathrm {Hol}}(\mathbb {D}, {{\mathbb {G}}}_n)\), we are looking for necessary and sufficient conditions for this map to “lift through given matrices”, i.e. find \(\Phi \) as above so that \(\pi \circ \Phi = \varphi \) and \(\Phi (\alpha _j) = A_j\), \(1\le j \le N\). A natural necessary condition is \(\varphi (\alpha _j)=\pi (A_j)\), \(1\le j \le N\). When the matrices \(A_j\) are derogatory (i.e. do not admit a cyclic vector) new necessary conditions appear, involving derivatives of \(\varphi \) at the points \(\alpha _j\). We prove that those conditions are necessary and sufficient for a local lifting. We give a formula which performs the global lifting in small dimensions (\(n \le 5\)), and a counter-example to show that the formula fails in dimensions 6 and above.  相似文献   

9.
In this paper, we study \(\lambda \)-constacyclic codes over the ring \(R=\mathbb {Z}_4+u\mathbb {Z}_4\) where \(u^{2}=1\), for \(\lambda =3+2u\) and \(2+3u\). Two new Gray maps from R to \(\mathbb {Z}_4^{3}\) are defined with the goal of obtaining new linear codes over \(\mathbb {Z}_4\). The Gray images of \(\lambda \)-constacyclic codes over R are determined. We then conducted a computer search and obtained many \(\lambda \)-constacyclic codes over R whose \(\mathbb {Z}_4\)-images have better parameters than currently best-known linear codes over \(\mathbb {Z}_4\).  相似文献   

10.
Let \(f: \mathbb {C}^n \rightarrow \mathbb {C}^k\) be a holomorphic function and set \(Z = f^{-1}(0)\). Assume that Z is non-empty. We prove that for any \(r > 0\),
$$\begin{aligned} \gamma _n(Z + r) \ge \gamma _n(E + r), \end{aligned}$$
where \(Z + r\) is the Euclidean r-neighborhood of Z; \(\gamma _n\) is the standard Gaussian measure in \(\mathbb {C}^n\), and \(E \subseteq \mathbb {C}^n\) is an \((n-k)\)-dimensional, affine, complex subspace whose distance from the origin is the same as the distance of Z from the origin.
  相似文献   

11.
The mixed braid groups \(B_{2,n}, \ n \in \mathbb {N}\), with two fixed strands and n moving ones, are known to be related to the knot theory of certain families of 3-manifolds. In this paper, we define the mixed Hecke algebra \(\mathrm {H}_{2,n}(q)\) as the quotient of the group algebra \({\mathbb Z}\, [q^{\pm 1}] \, B_{2,n}\) over the quadratic relations of the classical Iwahori–Hecke algebra for the braiding generators. We further provide a potential basis \(\Lambda _n\) for \(\mathrm {H}_{2,n}(q)\), which we prove is a spanning set for the \(\mathbb {Z}[q^{\pm 1}]\)-additive structure of this algebra. The sets \(\Lambda _n,\ n \in \mathbb {Z}\) appear to be good candidates for an inductive basis suitable for the construction of Homflypt-type invariants for knots and links in the above 3-manifolds.  相似文献   

12.
For \(A\subseteq {\mathbb {Q}}\), \(\alpha \in {\mathbb {Q}}\), let \(r_{A}(\alpha )=\#\{(a_{1}, a_{2})\in A^{2}: \alpha =a_{1}+a_{2}, a_{1}\le a_{2}\},\) \(\delta _{A}(\alpha )=\#\{(a_{1}, a_{2})\in A^{2}: \alpha =a_{1}-a_{2} \}.\) In this paper, we construct a set \(A\subset {\mathbb {Q}}\) such that \(r_{A}(\alpha )=1\) for all \(\alpha \in {\mathbb {Q}}\) and \(\delta _{A}(\alpha )=1\) for all \(\alpha \in {\mathbb {Q}}\setminus \{{0}\}\).  相似文献   

13.
We consider the Anderson polymer partition function
$$\begin{aligned} u(t):=\mathbb {E}^X\left[ e^{\int _0^t \mathrm {d}B^{X(s)}_s}\right] \,, \end{aligned}$$
where \(\{B^{x}_t\,;\, t\ge 0\}_{x\in \mathbb {Z}^d}\) is a family of independent fractional Brownian motions all with Hurst parameter \(H\in (0,1)\), and \(\{X(t)\}_{t\in \mathbb {R}^{\ge 0}}\) is a continuous-time simple symmetric random walk on \(\mathbb {Z}^d\) with jump rate \(\kappa \) and started from the origin. \(\mathbb {E}^X\) is the expectation with respect to this random walk. We prove that when \(H\le 1/2\), the function u(t) almost surely grows asymptotically like \(e^{\lambda t}\), where \(\lambda >0\) is a deterministic number. More precisely, we show that as t approaches \(+\infty \), the expression \(\{\frac{1}{t}\log u(t)\}_{t\in \mathbb {R}^{>0}}\) converges both almost surely and in the \(\hbox {L}^1\) sense to some positive deterministic number \(\lambda \). For \(H>1/2\), we first show that \(\lim _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) exists both almost surely and in the \(\hbox {L}^1\) sense and equals a strictly positive deterministic number (possibly \(+\infty \)); hence, almost surely u(t) grows asymptotically at least like \(e^{\alpha t}\) for some deterministic constant \(\alpha >0\). On the other hand, we also show that almost surely and in the \(\hbox {L}^1\) sense, \(\limsup _{t\rightarrow \infty } \frac{1}{t\sqrt{\log t}}\log u(t)\) is a deterministic finite real number (possibly zero), hence proving that almost surely u(t) grows asymptotically at most like \(e^{\beta t\sqrt{\log t}}\) for some deterministic positive constant \(\beta \). Finally, for \(H>1/2\) when \(\mathbb {Z}^d\) is replaced by a circle endowed with a Hölder continuous covariance function, we show that \(\limsup _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) is a deterministic finite positive real number, hence proving that almost surely u(t) grows asymptotically at most like \(e^{c t}\) for some deterministic positive constant c.
  相似文献   

14.
We compute the \({\mathbb {Z}}\)-rank of the subgroup \(\widetilde{E}_K =\bigcap _{n\in {\mathbb {N}}} N_{K_n/K}(K_n^\times )\) of elements of the multiplicative group of a number field K that are norms from every finite level of the cyclotomic \({\mathbb {Z}}_\ell \)-extension \(K^c\) of K. Thus we compare its \(\ell \)-adification \({\mathbb {Z}}_\ell \otimes _{\mathbb {Z}}\widetilde{E}_K\) with the group of logarithmic units \(\widetilde{\varepsilon }_K\). By the way we point out an easy proof of the Gross–Kuz’min conjecture for \(\ell \)-undecomposed extensions of abelian fields.  相似文献   

15.
Consistent reconstruction is a method for producing an estimate \(\widetilde{x} \in {\mathbb {R}}^d\) of a signal \(x\in {\mathbb {R}}^d\) if one is given a collection of \(N\) noisy linear measurements \(q_n = \langle x, \varphi _n \rangle + \epsilon _n\), \(1 \le n \le N\), that have been corrupted by i.i.d. uniform noise \(\{\epsilon _n\}_{n=1}^N\). We prove mean-squared error bounds for consistent reconstruction when the measurement vectors \(\{\varphi _n\}_{n=1}^N\subset {\mathbb {R}}^d\) are drawn independently at random from a suitable distribution on the unit-sphere \({\mathbb {S}}^{d-1}\). Our main results prove that the mean-squared error (MSE) for consistent reconstruction is of the optimal order \({\mathbb {E}}\Vert x - \widetilde{x}\Vert ^2 \le K\delta ^2/N^2\) under general conditions on the measurement vectors. We also prove refined MSE bounds when the measurement vectors are i.i.d. uniformly distributed on the unit-sphere \({\mathbb {S}}^{d-1}\) and, in particular, show that in this case, the constant \(K\) is dominated by \(d^3\), the cube of the ambient dimension. The proofs involve an analysis of random polytopes using coverage processes on the sphere.  相似文献   

16.
In this paper we propose to develop harmonic analysis on the Poincaré ball \({{\mathbb {B}}_{t}^{n}}\), a model of the \(n\)-dimensional real hyperbolic space. The Poincaré ball \({{\mathbb {B}}_{t}^{n}}\) is the open ball of the Euclidean \(n\)-space \(\mathbb {R}^n\) with radius \(t >0\), centered at the origin of \(\mathbb {R}^n\) and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in \(\mathbb {R}^n.\) For any \(t>0\) and an arbitrary parameter \(\sigma \in \mathbb {R}\) we study the \((\sigma ,t)\)-translation, the \((\sigma ,t)\)-convolution, the eigenfunctions of the \((\sigma ,t)\)-Laplace–Beltrami operator, the \((\sigma ,t)\)-Helgason Fourier transform, its inverse transform and the associated Plancherel’s Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when \(t \rightarrow +\infty \) the resulting hyperbolic harmonic analysis on \({{\mathbb {B}}_{t}^{n}}\) tends to the standard Euclidean harmonic analysis on \(\mathbb {R}^n,\) thus unifying hyperbolic and Euclidean harmonic analysis. As an application we construct diffusive wavelets on \({{\mathbb {B}}_{t}^{n}}\).  相似文献   

17.
Let \(\pi _{\varphi }\) (or \(\pi _{\psi }\)) be an automorphic cuspidal representation of \(\text {GL}_{2} (\mathbb {A}_{\mathbb {Q}})\) associated to a primitive Maass cusp form \(\varphi \) (or \(\psi \)), and \(\mathrm{sym}^j \pi _{\varphi }\) be the jth symmetric power lift of \(\pi _{\varphi }\). Let \(a_{\mathrm{sym}^j \pi _{\varphi }}(n)\) denote the nth Dirichlet series coefficient of the principal L-function associated to \(\mathrm{sym}^j \pi _{\varphi }\). In this paper, we study first moments of Dirichlet series coefficients of automorphic representations \(\mathrm{sym}^3 \pi _{\varphi }\) of \(\text {GL}_{4}(\mathbb {A}_{\mathbb {Q}})\), and \(\pi _{\psi }\otimes \mathrm{sym}^2 \pi _{\varphi }\) of \(\text {GL}_{6}(\mathbb {A}_{\mathbb {Q}})\). For \(3 \le j \le 8\), estimates for \(|a_{\mathrm{sym}^j \pi _{\varphi }}(n)|\) on average over a short interval have also been established.  相似文献   

18.
Consider \(G=SL_2(\mathbb {Z})/\{\pm I\}\) acting on the complex upper half plane H by \(h_M(z)=\frac{az\,+\,b}{cz\,+\,d}\) for \(M \in G\). Let \(D=\{z \in H: |z|\ge 1, |\mathfrak {R}(z)|\le 1/2\}\). We consider the set \({\mathcal {E}} \subset G\) with the nine elements M, different from the identity, such that \(\mathrm{tr\,}(MM^T)\le 3\). We equip the tiling of H defined by \(\mathbb {D}=\{h_M(D){:}\, M \in G\}\) with a graph structure where the neighbours are defined by \(h_M(D) \cap h_{M'}(D) \ne \emptyset \), equivalently \(M^{-1}M' \in {\mathcal {E}}\). The present paper studies several Markov chains related to the above structure. We show that the simple random walk on the above graph converges a.s. to a point X of the real line with the same distribution of \(S_2 W^{S_1}\), where \(S_1,S_2,W\) are independent with \(\Pr (S_i=\pm 1)=1/2\) and where W is valued in (0, 1) with distribution \(\Pr (W<w)=\mathbf ? (w)\). Here \(\mathbf ? \) is the Minkowski function. If \(K_1, K_2, \ldots \) are i.i.d with distribution \(\Pr (K_i=n)= 1/2^n\) for \(n=1,2,\ldots \), then \(W= \frac{1}{K_1+\frac{1}{K_2+\ldots }}\): this known result (Isola in Appl Math 5:1067–1090, 2014) is derived again here.  相似文献   

19.
Let \(\mathcal S\) be an abelian group of automorphisms of a probability space \((X, {\mathcal A}, \mu )\) with a finite system of generators \((A_1, \ldots , A_d).\) Let \(A^{{\underline{\ell }}}\) denote \(A_1^{\ell _1} \ldots A_d^{\ell _d}\), for \({{\underline{\ell }}}= (\ell _1, \ldots , \ell _d).\) If \((Z_k)\) is a random walk on \({\mathbb {Z}}^d\), one can study the asymptotic distribution of the sums \(\sum _{k=0}^{n-1} \, f \circ A^{\,{Z_k(\omega )}}\) and \(\sum _{{\underline{\ell }}\in {\mathbb {Z}}^d} {\mathbb {P}}(Z_n= {\underline{\ell }}) \, A^{\underline{\ell }}f\), for a function f on X. In particular, given a random walk on commuting matrices in \(SL(\rho , {\mathbb {Z}})\) or in \({\mathcal M}^*(\rho , {\mathbb {Z}})\) acting on the torus \({\mathbb {T}}^\rho \), \(\rho \ge 1\), what is the asymptotic distribution of the associated ergodic sums along the random walk for a smooth function on \({\mathbb {T}}^\rho \) after normalization? In this paper, we prove a central limit theorem when X is a compact abelian connected group G endowed with its Haar measure (e.g., a torus or a connected extension of a torus), \(\mathcal S\) a totally ergodic d-dimensional group of commuting algebraic automorphisms of G and f a regular function on G. The proof is based on the cumulant method and on preliminary results on random walks.  相似文献   

20.
This second part of the paper (see Ann Math de Toulouse, arXiv:1408.5797 for part I) is concerned with questions of existence and uniqueness of tangents in the special case of \(\varvec{\mathbb {G}}\)-plurisubharmonic functions, where \(\varvec{\mathbb {G}}\subset G(p,\mathbf{R}^n)\) is a compact subset of the Grassmannian of p-planes in \(\mathbf{R}^n\). An u.s.c. function u on an open set \(\Omega \subset \mathbf{R}^n\) is \(\varvec{\mathbb {G}}\)-plurisubharmonic if its restriction to \(\Omega \cap W\) is subharmonic for every affine \(\varvec{\mathbb {G}}\)-plane W. Here \(\varvec{\mathbb {G}}\) is assumed to be invariant under a subgroup \(K\subset \mathrm{O}(n)\) which acts transitively on \(S^{n-1}\). Tangents to u at a point \(x\) are the cluster points of u under a natural flow (or blow-up) at \(x\). They always exist and are \(\varvec{\mathbb {G}}\)-harmonic at all points of continuity. A homogeneity property is established for all tangents in these geometric cases. This leads to principal results concerning the Strong Uniqueness of Tangents, which means that all tangents are unique and of the form \(\Theta K_p\) where \(K_p\) is the Riesz kernel and \(\Theta \) is the density of u at the point. Strong uniqueness is a form of regularity which implies that the sets \(\{\Theta (u,x)\ge c\}\) for \(c>0\) are discrete. When the invariance group \(K= \mathrm{O}(n), \mathrm{U}(n)\) or Sp(n) strong uniqueness holds for all but a small handful of cases. It also holds for essentially all interesting \(\varvec{\mathbb {G}}\) which arise in calibrated geometry. When strong uniqueness fails, homogeneity implies that tangents are characterized by a subequation on the sphere, which is worked out in detail. In the cases corresponding to the real, complex, and quaternionic Monge–Ampère equations (convex functions, and complex and quaternionic plurisubharmonic functions), tangents, which are far from unique, are then systematically studied and classified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号