首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetD denote a bounded complete bicircular domain (centered at (0, 0)) in the space C of two complex variablesz 1 andz 1. Extremal problems are treated in the classP D which is a generalization, to the two complex variables case, of the class of close-to-starlike functions regular in a disc. Our considerations include estimates of the basic functionals, in particular, those specific for the functions of several complex variables; exactness of estimates is considered, as well. For example, we obtain estimates of the functionals $$A_k (D) = \mathop {\sup }\limits_{(z_1 ,z_2 ) \in D} \mathop \sum \limits_{l = 0}^k |a_{k - l,l} |^2 |z_1 |^{2(k - l)} |z_2 |^{2l} ,B_k (D) = \mathop {\sup }\limits_{(z_1 ,z_2 ) \in D} \left| {\mathop \sum \limits_{l = 0}^k a_{k - l,l} z_1^{k - l} z_2^l } \right|,k = 1,2 \ldots .$$ It is also proved that the Carathéodory class is a subclass of the classP D.  相似文献   

2.
В работе для неотрица тельных последовате льностей (...,a ?1 i ), aa 0 i ),a 1 i ), ...), удовлетв оряющих условию \(0< \mathop {\sup }\limits_k a_k^{(i)}< \infty\) (i=1,...,т), доказ а но неравенство (1) $$\begin{gathered} \mathop \sum \limits_{k = - \infty }^\infty \mathop {\sup }\limits_{k \leqq k_1 + \ldots + k_m \leqq k + l} (a_{k_1 }^{(1)} \ldots a_{k_m }^{(m)} ) \geqq \hfill \\ \geqq \mathop \prod \limits_{i = 1}^m (\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )\left[ {\mathop \sum \limits_{i = 1}^m \frac{{\mathop \sum \limits_{k = - \infty }^\infty (a_k^{(i)} )^{p_i } }}{{(\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )^{p_i } }} + l - m + 1} \right], \hfill \\ \end{gathered}$$ гдеl произвольное не отрицательное целое число, 1≦p 1, ...,p m ≦∞ и \(\mathop \sum \limits_{i = 1}^m p_i^{ - 1} = 1\) . Это неравенство явля ется обобщением и уто чнением неравенств А. Прекопа, Ш. Данча и Л. Лейндлера. Доказано также, что ес ли все последователь ности содержат только коне чное число ненулевых членов, то н еобходимым условием для равенства в (1) является существование такого числа α>0, чтоa k( i )=а илиa k( i )=0 для всехi=1,...,m;?∞<k<∞.  相似文献   

3.
Generalizing two results of Rieger [8] and Selberg [10] we give asymptotic formulas for sums of type $${\matrix {\sum \limits_{n\leq x}\cr n\equiv l({\rm mod}k)\cr f_{\kappa}(n)\equiv s_{\kappa}({\rm mod}p_{\kappa})\cr (\kappa=1,\dots,r)\cr}}\qquad \chi(n)\qquad {\rm and} {\matrix {\sum \limits_{n\leq x}\cr n\equiv l({\rm mod}k)\cr f_{\kappa}(n)\equiv s_{\kappa}({\rm mod}p_{\kappa})\cr (\kappa=1,\dots,r)\cr}}\qquad \chi(n),$$ where χ is a suitable multiplicative function, f1,…, f r are “small” additive, prime-independent arithmetical functions and k, l are coprime. The proofs are based on an analytic method which consists of considering the Dirichlet series generated by $ \chi(n)z_{1}^{f_{1}(n)}\cdot... \cdot z_{r}^{f_{r}(n)},z_{1}\dots z_{r} $ complex.  相似文献   

4.
Найдены методы восст ановления интеграла по информации $$I\left( f \right) = \left\{ {f^{(j)} \left( {x_i } \right)\left( {j = 0, ..., \gamma _i - 1; i = 1, ..., n; 1 \leqq \gamma _i \leqq r; \gamma _i + ... + \gamma _n \leqq N} \right.} \right\},$$ оптимальные на класс ахW p r ,r=1,2,...; 1≦p≦∞. Это позволило, в частност и, получить наилучшие для классаW p r квадратурные форму лы вида $$\mathop \smallint \limits_0^1 f\left( x \right)dx = \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 1}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right)$$ И $$\mathop \smallint \limits_0^1 f\left( x \right)dx = af\left( 0 \right) + \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 0}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + bf\left( 1 \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right).$$   相似文献   

5.
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose P, n, k, τ are integers, P≥1, n≥2, k≥n (τ+1), τ≥0. Put $$J_{k,n} (P) = \int_0^1 \cdots \int_0^1 {\left| {\sum\nolimits_{x = 1}^P {e^{2\pi i(a_1 x + \cdots + a_n x^n )} } } \right|^{2k} da_1 \ldots da_n .} $$ Then $$J_{k,n} \leqslant n!k^{2n\tau } n^{\sigma n^2 u} \cdot 2^{2n^2 \tau } P^{2k - \Delta } ,$$ where $$\begin{gathered} u = u_\tau = min(n + 1,\tau ), \hfill \\ \Delta = \Delta _\tau = n(n + 1)/2 - (1 - 1/n)^{\tau + 1} n^2 /2. \hfill \\ \end{gathered} $$   相似文献   

6.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

7.
В РАБОтЕ пРИВЕДЕНы НЕ ОБхОДИМыЕ И ДОстАтОЧ НыЕ УслОВИь сУЩЕстВОВАНИь НЕРАВ ЕНстВА НА пОлУпРьМОИ R+=[0, ∞): $$\left\| {(D^\alpha x)( \cdot )} \right\|_{C(R_ + )} \leqq K\left\| {x( \cdot )} \right\|_{L_2 (R_ + )}^{v_1 } \left\| {(D^n x)( \cdot )} \right\|_{L_2 (R_ + )}^{v_2 } ,$$ гДЕ А-пРОИжВОльНОЕ ВЕ ЩЕстВЕННОЕ ЧИслО,n≧1 — цЕлОЕ Иv i>0,i=1,2. ДРОБНАь пРОИжВОД НАьD α пОНИМАЕтсь В сМыслЕ г. ВЕИль. ВыЧИслЕНА НАИ лУЧшАь (т.Е. НАИМЕНьшАь Иж ВОжМ ОжНых) кОНстАНтАк=к(п, А) В ЁтО М НЕРАВЕНстВЕ И ВыпИс АНА ЁкстРЕМАльНАь ФУНкц Иь, НА кОтОРОИ НЕРАВЕНстВО пРЕВРАЩАЕтсь В РАВЕН стВО.  相似文献   

8.
BOUNDARYVALUEPROBLEMSOFSINGULARLYPERTURBEDINTEGRO-DIFFERENTIALEQUATIONSZHOUQINDEMIAOSHUMEI(DepartmentofMathematics,JilinUnive...  相似文献   

9.
We study discrete Sobolev spaces with symmetric inner product $$\left\langle {f,g} \right\rangle _\alpha = \int_{ - 1}^1 {f g d\mu _\alpha } + M[f(1)g(1) + f( - 1)g( - 1)] + K[f'(1)g'(1) + f'( - 1)g'( - 1)]$$ , where M ≥ 0, k ≥ 0, and $$d\mu _\alpha (x) = \frac{{\Gamma (2\alpha + 2)}}{{2^{2\alpha + 1} \Gamma ^2 (\alpha + 1)}}(1 - x^2 )^\alpha dx, \alpha > - 1$$ , is the Gegenbauer probability measure. We obtain the solution of the following extremal problem: Calculate $$\mathop {\inf }\limits_{a_0 ,a_1 ,...,a_{N - r} } \left\{ {\langle P_N^{(r)} ,P_N^{(r)} \rangle _\alpha ,1 \leqslant r \leqslant N - 1, P_N^{(r)} (x) = \sum\limits_{j = N - r + 1}^N {a_j^0 x^j } + \sum\limits_{j = 0}^{N - r} {a_j x^j } } \right\}$$ , where the a j 0 , j = N ? r + 1, N ? r + 2, ..., N ? 1, N, a N 0 > 0, are fixed numbers, and find the extremal polynomial.  相似文献   

10.
Let ${\rm} A=k[{u_{1}^{a_{1}}},{u_{2}^{a_{2}}},\dots,{u_{n}^{a_{n}}},{u_{1}^{c_{1}}} \dots {u_{n}^{c_{n}}},{u_{1}^{b_{1}}} \dots {u_{n}^{b_{n}}}]\ \subset k[{u_{1}}, \dots {u_{n}}],$ where, aj, bj, Cj ∈ ?, aj > 0, (bj, Cj) ≠ (0,0) for 1 ≤ j ≤ n, and, further ${\underline b}:=\ ({b_{1}}, \dots,{b_{n}})\ \not=\ 0 $ and ${\underline c}:=\ ({c_{1}}, \dots,{c_{n}})\ \not=\ 0 $ . The main result says that the defining ideal I ? m = (x1,…, xn, y, z) ? k[x1,…, xn, y, z] of the semigroup ring A has analytic spread ?(Im) at most three.  相似文献   

11.
Define , $S_{k,n} = \Sigma _{1 \leqslant i_1< \cdot \cdot \cdot< l_k \leqslant n} X_{i_1 } \cdot \cdot \cdot X_{i_k } ,n \geqslant k \geqslant {\text{1}}$ where {X, X n ,n≥1} are i.i.d. random variables withEX=0,EX 2=1 and letH k (·) denote the Hermite polynomial of degreek. By establishing an LIL for products of correlated sums of i.i.d. random variables, the a.s. decomposition $$\begin{gathered} k!S_{k,n} = n^{k/2} H_k (S_{1n} /n^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ) - \left( {\begin{array}{*{20}c} k \\ 2 \\ \end{array} } \right)S_{1.n}^{k - 2} \sum\limits_{i = 1}^n {(X_i^2 - 1)} \hfill \\ + O(n^{(k - 1)/2} (\log \log n)^{(k - 3/2} ) \hfill \\ \end{gathered} $$ valid whenEX 4<∞, elicits an LIL forη k,n =k!S k,n ?n k/2 H k (S 1n /n 1/2) under a reduced normalization. Moreover, whenE|X| p <∞ for somep in [2, 4], a Marcinkiewicz-Zygmund type strong law forη k,n is obtained, likewise under a reduced normalization.  相似文献   

12.
Let Zj be the Euclidean space of vectors \((z_{j,1,...,} z_{j_{j \cdot n_j + 1} } ), Z = \mathop \oplus \limits_{j = 1}^P Z_j\) . The function u: Z → ?+, u ?0, is said to be logarithmically p-subharmonic if log u(z) is upper semicontinuous with respect to the totality of the variables and subharmonic or identically equal to ?∞ with respect to each zj when the remaining ones are fixed. For such functions, with the growth estimate $$log u(z) \leqslant \delta \mathop \Pi \limits_{j = 1}^P (1 + |z_{j,n_j + 1} |) + N(\mathop {\sum\limits_{\mathop {1 \leqslant j \leqslant p}\limits_{} } {z_{j,k}^2 } }\limits_{1 \leqslant k \leqslant n_j } )^{1/2} + C; \delta ,N \geqslant 0, C \in \mathbb{R}$$ one proves theorems on equivalence of) (Lq)-norms of their restrictions to \(X = \mathop \oplus \limits_{j = 1}^P (Z_{j,1} ,...,z_{j,n_j } )\) and to a relatively dense subset of it, generalizing the known Cartwright and Plancherel-Pólya results.  相似文献   

13.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

14.
Последовательность {itak} (n) k =1/∞ вещественных ч исел называется дважды мо нотонной, еслиa k -2a k+1 +a k+2 ≧0 дляk≧1. В работе доказываютс я следующие утвержде ния, являющиеся обобщени ем двух теорем Фейера:
  1. Если {itak — дважды моно тонная последовател ьность, то для ¦z¦<1 $$\operatorname{Re} \sum\limits_{\kappa = 1}^\infty {a_\kappa z^\kappa } /\sum\limits_{\kappa = 1}^n {a_\kappa z^\kappa } > 1/2$$ дляи≧ 1.
  2. Если О≦β<1 и последова тельность (k+1-2β)ak} дважд ы монотонна, то для ¦z¦<1 $$\operatorname{Re} \sum\limits_{\kappa = 1}^\infty {ka_\kappa z^\kappa } /\sum\limits_{\kappa = 1}^\infty {a_\kappa z^\kappa } > \beta $$ , то есть $$\sum\limits_{\kappa = 1}^\infty {a_\kappa z^\kappa } \varepsilon S_\beta ^\kappa $$ . При помощи 2) получены о бобщения и уточнения теорем из работы [1] о линейных комбинациях некотор ых однолистных функц ий.
  相似文献   

15.
Let ${\Phi_0(\boldmath{z})}$ be the function defined by $$\Phi_0({\boldmath z}) = \Phi _{0}(z_1,\ldots, z_m)=\sum_{k\geq 0}\frac{E_k(z_1^{r^k},\ldots,z_m^{r^k})}{F_k(z_1^{r^k},\ldots,z_m^{r^k})},$$ where ${E_k(\boldmath{z})}$ and ${F_k(\boldmath{z})}$ are polynomials in m variables ${\boldmath{z} = (z_1,\ldots, z_m)}$ with coefficients satisfying a weak growth condition and r ≥ 2 a fixed integer. For an algebraic point ${\boldmath{\alpha}}$ satisfying some conditions, we prove that ${\Phi_{0}(\boldmath{\alpha})}$ is algebraic if and only if ${\Phi_{0}(\boldmath{z})}$ is a rational function. This is a generalization of the transcendence criterion of Duverney and Nishioka in one variable case. As applications, we give some examples of transcendental numbers.  相似文献   

16.
Let p > 3 be a prime, and let q p (2) = (2 p?1 ? 1)/p be the Fermat quotient of p to base 2. In this note we prove that $$\sum\limits_{k = 1}^{p - 1} {\frac{1}{{k \cdot {2^k}}}} \equiv {q_p}(2) - \frac{{p{q_p}{{(2)}^2}}}{2} + \frac{{{p^2}{q_p}{{(2)}^3}}}{3} - \frac{7}{{48}}{p^2}{B_{p - 3}}(\bmod {p^3})$$ , which is a generalization of a congruence due to Z.H. Sun. Our proof is based on certain combinatorial identities and congruences for some alternating harmonic sums. Combining the above congruence with two congruences by Z.H. Sun, we show that $${q_p}{(2)^3} \equiv - 3\sum\limits_{k = 1}^{p - 1} {\frac{{{2^k}}}{{{k^3}}}} + \frac{7}{{16}}\sum\limits_{k = 1}^{(p - 1)/2} {\frac{1}{{{k^3}}}} (\bmod p)$$ , which is just a result established by K. Dilcher and L. Skula. As another application, we obtain a congruence for the sum $\sum\limits_{k = 1}^{p - 1} {{1 \mathord{\left/ {\vphantom {1 {\left( {k^2 \cdot 2^k } \right)}}} \right. \kern-0em} {\left( {k^2 \cdot 2^k } \right)}}}$ modulo p 2 that also generalizes a related Sun’s congruence modulo p.  相似文献   

17.
Let Sk0(N),χ) be the space of holomorphic Γ0(N) forms of integral weight k and character χ. Let fj(z), 1≤j≤v 2k new (p), be the set of normalized newforms of S2k0(p),1), where p is a prime, and let $L_j (s) = L_{f_i } (s)$ be the L-function of fj(z). It is proved that $$\sum\limits_{1 \leqslant j \leqslant v_{2k}^{new} (p)} {L_j^2 (\tfrac{1}{2}) \ll p\log ^4 p \cdot \log \log p} , p \to \infty$$ where 2k≥4. Errors in an earlier paper (R?Mat, 1989, 4A65) are corrected. Bibliography: 11 titles.  相似文献   

18.
LetZ N (t) be anN-parameter Wiener process in one dimension, and $$E(x,T) = \left\{ {t = (t_1 , \cdot \cdot \cdot ,t_N ):Z_N (t) = x,0 \leqslant t_1 , \cdot \cdot \cdot ,t_N \leqslant T} \right\}$$ . Then we obtain that with probability one, the Hausdorff measure function ofE(x,T) is $$\psi _N (r) = r^{N - \tfrac{1}{2}} (\log \log r^{ - 1} )^{\tfrac{1}{2}} ,\forall r \in (0,\frac{1}{4})$$ for anyxR 1 andT>0.  相似文献   

19.
20.
Пусть {? ik(x):i, k=1, 2,...} — орто нормированная систе ма в пространстве с полож ительной мерой и {a ik} — последов ательность действит ельных чисел, для которой $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \kappa ^2 (i,k)< \infty ,$$ где {x(i, K)} — определенна я неубывающая последовательность положительных чисел. Тогда суммаf(x) двойног о ортогонального ряд а \(\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) существует в смысле с ходимости в метрикеL 2 и сходимос ти почти всюду. Изучае тся порядок так называем ой сильной аппроксимац ииf(x) (при коэффициентн ых условиях) прямоуголь ными частными суммами \(s_{mn} (x) = \mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) . Основной ре зультат состоит в сле дующем. Если {λj(m):m=1, 2,...} — неубывающи е последовательност и положительньк чисел, стремящиеся к ∞ и такие, что \(\mathop {\lim \sup }\limits_{m \to \infty } \lambda _j (2m)/\lambda _j (m)< \sqrt 2 \) дляj=1,2, и если $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \left[ {\log log (i + 3)} \right]^2 \left[ {\log log (k + 3)} \right]^2 (\lambda _1^2 (i) + \lambda _2^2 (k))< \infty ,$$ TO ПОЧТИ ВСЮДУ $$\left\{ {\frac{1}{{mn}}\mathop \sum \limits_{i = 1}^m \mathop \sum \limits_{\kappa = 1}^m \left[ {s_{ik} (x) - f(x)} \right]^2 } \right\}^{1/2} = o_x (\lambda _1^{ - 1} (m) + \lambda _2^{ - 1} (n))$$ при min (m, n) → ∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号