首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The following limit theorem on Hamiltonian systems (resp. corresponding Riccati matrix equations) is shown: Given(N, N)-matrices,A, B, C andn ∈ {1,…, N} with the following properties:A and kemelB(x) are constant, rank(I, A, …, A n?1) B(x)≠N,B(x)C n(R), andB(x)(A T)j-1 C(x)∈C n-j(R) forj=1, …, n. Then \(\mathop {\lim }\limits_{x \to x_0 } \eta _1^T \left( x \right)V\left( x \right)U^{ - 1} \left( x \right)\eta _2 \left( x \right) = d_1^T \left( {x_0 } \right)U\left( {x_0 } \right)d_2 \) forx 0R, whenever the matricesU(x), V(x) are a conjoined basis of the differential systemU′=AU + BV, V′=CU?A TV, and whenever ηi(x)∈R N satisfy ηi(x 0)=U(x 0)d i ∈ imageU(x 0) η′i-Aηni(x) ∈ imageB(x),B(x)(η′i(x)-Aηi(x)) ∈C n-1 R fori=1,2.  相似文献   

2.
Let ${\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)}$ with the non-negative potential V belonging to reverse H?lder class with respect to the measure ??(x)dx, where ??(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying ${\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. }$ We obtain some estimates for ${V^{\alpha}\mathcal{L}^{-\alpha}}$ on the weighted L p spaces and we study the weighted L p boundedness of the commutator ${[b, V^{\alpha} \mathcal{L}^{-\alpha}]}$ when ${b\in BMO_\omega}$ and 0?<??? ?? 1.  相似文献   

3.
Let ${\rm} A=k[{u_{1}^{a_{1}}},{u_{2}^{a_{2}}},\dots,{u_{n}^{a_{n}}},{u_{1}^{c_{1}}} \dots {u_{n}^{c_{n}}},{u_{1}^{b_{1}}} \dots {u_{n}^{b_{n}}}]\ \subset k[{u_{1}}, \dots {u_{n}}],$ where, aj, bj, Cj ∈ ?, aj > 0, (bj, Cj) ≠ (0,0) for 1 ≤ j ≤ n, and, further ${\underline b}:=\ ({b_{1}}, \dots,{b_{n}})\ \not=\ 0 $ and ${\underline c}:=\ ({c_{1}}, \dots,{c_{n}})\ \not=\ 0 $ . The main result says that the defining ideal I ? m = (x1,…, xn, y, z) ? k[x1,…, xn, y, z] of the semigroup ring A has analytic spread ?(Im) at most three.  相似文献   

4.
In this paper we establish the local H?lder continuity of the spatial gradient of weak solutions to the parabolic p(x, t)-Laplacian system $$\begin{array}{lll}\partial_{t}u - {\rm div} \left( a(x, t)|Du|^{p(x, t)-2}Du \right) = 0.\end{array}$$ More precisely, we prove that $$\begin{array}{lll}Du \in C_{\rm loc}^{0;\alpha,\alpha/2} \quad {\rm for\; some} \; \alpha \in (0, 1],\end{array}$$ provided p(·) and a(·) are H?lder-continuous.  相似文献   

5.
Denote by span {f 1,f 2, …} the collection of all finite linear combinations of the functionsf 1,f 2, … over ?. The principal result of the paper is the following. Theorem (Full Müntz Theorem in Lp(A) for p ∈ (0, ∞) and for compact sets A ? [0, 1] with positive lower density at 0). Let A ? [0, 1] be a compact set with positive lower density at 0. Let p ∈ (0, ∞). Suppose (λ j ) j=1 is a sequence of distinct real numbers greater than ?(1/p). Then span {x λ1,x λ2,…} is dense in Lp(A) if and only if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ . Moreover, if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ , then every function from the Lp(A) closure of {x λ1,x λ2,…} can be represented as an analytic function on {z ∈ ? \ (?∞,0] : |z| < rA} restricted to A ∩ (0, rA) where $r_A : = \sup \left\{ {y \in \mathbb{R}:\backslash ( - \infty ,0]:\left| z \right|< r_A } \right\}$ (m(·) denotes the one-dimensional Lebesgue measure). This improves and extends earlier results of Müntz, Szász, Clarkson, Erdös, P. Borwein, Erdélyi, and Operstein. Related issues about the denseness of {x λ1,x λ2,…} are also considered.  相似文献   

6.
We study the first vanishing time for solutions of the Cauchy–Dirichlet problem for the 2m-order (m ≥ 1) semilinear parabolic equation ${u_t + Lu + a(x) |u|^{q-1}u=0,\,0 < q < 1}We study the first vanishing time for solutions of the Cauchy–Dirichlet problem for the 2m-order (m ≥ 1) semilinear parabolic equation ut + Lu + a(x) |u|q-1u=0, 0 < q < 1{u_t + Lu + a(x) |u|^{q-1}u=0,\,0 < q < 1} with a(x) ≥ 0 bounded in the bounded domain W ì \mathbb RN{\Omega \subset \mathbb R^N}. We prove that if N 1 2m{N \ne 2m} and ò01 s-1 (meas\nolimits {x ? W: |a(x)| £ s })q ds < ¥, q = min(\frac2mN,1){\int_0^1 s^{-1} (\mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \})^\theta {\rm d}s < \infty,\ \theta=\min\left(\frac{2m}N,1\right)}, then the solution u vanishes in a finite time. When N = 2m, the same property holds if ${\int_0^1 s^{-1} \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) \ln \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) {\rm d}s > - \infty}${\int_0^1 s^{-1} \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) \ln \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) {\rm d}s > - \infty}.  相似文献   

7.
In this paper,a uniqueness theorem for meromorphic mappings partially sharing 2N+3 hyperplanes is proved.For a meromorphic mapping f and a hyperplane H,set E(H,f) = {z|ν(f,H)(z) 0}.Let f and g be two linearly non-degenerate meromorphic mappings and {Hj}j2=N1+ 3be 2N + 3 hyperplanes in general position such that dim f-1(Hi) ∩ f-1(Hj) n-2 for i = j.Assume that E(Hj,f) E(Hj,g) for each j with 1 j 2N +3 and f = g on j2=N1+ 3f-1(Hj).If liminfr→+∞ 2j=N1+ 3N(1f,Hj)(r) j2=N1+ 3N(1g,Hj)(r) NN+1,then f ≡ g.  相似文献   

8.
We mainly study the existence of positive solutions for the following third order singular super-linear multi-point boundary value problem $$ \left \{ \begin{array}{l} x^{(3)}(t)+ f(t, x(t), x'(t))=0,\quad0 where \(0\leq\alpha_{i}\leq\sum_{i=1}^{m_{1}}\alpha_{i}<1\) , i=1,2,…,m 1, \(0<\xi_{1}< \xi_{2}< \cdots<\xi_{m_{1}}<1\) , \(0\leq\beta_{j}\leq\sum_{i=1}^{m_{2}}\beta_{i}<1\) , j=1,2,…,m 2, \(0<\eta_{1}< \eta_{2}< \cdots<\eta_{m_{2}}<1\) . And we obtain some necessary and sufficient conditions for the existence of C 1[0,1] and C 2[0,1] positive solutions by means of the fixed point theorems on a special cone. Our nonlinearity f(t,x,y) may be singular at t=0 and t=1.  相似文献   

9.
In this paper, we study the existence of positive solutions to the following Schr¨odinger system:{-?u + V_1(x)u = μ_1(x)u~3+ β(x)v~2u, x ∈R~N,-?v + V_2(x)v = μ_2(x)v~3+ β(x)u~2v, x ∈R~N,u, v ∈H~1(R~N),where N = 1, 2, 3; V_1(x) and V_2(x) are positive and continuous, but may not be well-shaped; and μ_1(x), μ_2(x)and β(x) are continuous, but may not be positive or anti-well-shaped. We prove that the system has a positive solution when the coefficients Vi(x), μ_i(x)(i = 1, 2) and β(x) satisfy some additional conditions.  相似文献   

10.
For 1 ? c ? p ? 1, let E 1,E 2, …,E m be fixed numbers of the set {0, 1}, and let a 1, a 2, …, a m (1 ? a i ? p, i = 1, 2, …,m) be of opposite parity with E 1,E 2, …,E m respectively such that a 1 a 2a m c (mod p). Let $$N(c,m,p) = {1 \over {{2^{m - 1}}}}\mathop {\sum\limits_{{a_1} = 1}^{p - 1} {\sum\limits_{{a_2} = 1}^{p - 1} \ldots } }\limits_{{a_1}{a_2} \ldots \equiv c{\rm{ (}}\bmod {\rm{ }}p)} \sum\limits_{{a_m} = 1}^{p - 1} {(1 - {{( - 1)}^{{a_1} + {E_1}}})(1 - {{( - 1)}^{{a_2} + {E_2}}}) \ldots } (1 - {( - 1)^{{a_m} + {E_m}}}).$$ We are interested in the mean value of the sums $$\sum\limits_{c = 1}^{p - 1} {{E^2}} (c,m,p),$$ where E(c, m, p) = N(c,m, p)?((p ? 1) m?1)/(2 m?1) for the odd prime p and any integers m ? 2. When m = 2, c = 1, it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.  相似文献   

11.
Poincaré series     
Let Nα denote the number of solutions to the congruence F(xi,..., xm) ≡ 0 (mod pα) for a polynomial F(xi,..., xm) with integral p-adic coefficients. We examine the series \(\varphi (t) = \sum\nolimits_{\alpha = 0}^\infty {N_{\alpha ^{t^\alpha } } } \) . called the Poincaré series for the polynomial F. In this work we prove the rationality of the series ?(t) for a class of isometrically equivalent polynomials of m variables, m ≥ 2, containing the sum of two forms ?n(x, y) + ?n+1(x, y) respectively of degrees n and n+1, n ≥ 2. In particular the Poincaré series for any third degree polynomial F3(x, y) (over the set of unknowns) with integral p-adic coefficients is a rational function of t.  相似文献   

12.
Let x: M → A n+1 be the graph of some strongly convex function x n+1= ?( x1,…,xn) defined on a domain Ω ? A n in a real affine space. We consider the relative metric G, defined by $ G=\sum{\partial^{2}f\over\partial x_{i}\partial x_{j}}dx_{i}dx_{j}$ .In this paper, we calculate the second variation of the area integral with respect to the relative metric G. We prove that the parabolic affine hyperspheres are stable.  相似文献   

13.
For any x ?? (0, 1], let the series \( {\sum}_{n=1}^{\infty }1/{d}_n(x) \) be the Sylvester expansion of x, where {d j (x),?j?≥?1} is a sequence of positive integers satisfying d1(x)?≥?2 and dj?+?1(x)?≥?d j (x)(d j (x)???1)?+?1 for j?≥?1. Suppose ? : ? → ?+ is a function satisfying ?(n+1) – ? (n) → ∞ as n → ∞. In this paper, we consider the set
$$ E\left(\phi \right)=\left\{x\kern0.5em \in \left(0,1\right]:\kern0.5em \underset{n\to \infty }{\lim}\frac{\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)}{\phi (n)}=1\right\} $$
and quantify the size of the set in the sense of Hausdorff dimension. As applications, for any β > 1 and γ > 0, we get the Hausdorff dimension of the set \( \left\{x\in \kern1em \left(0,1\right]:\kern0.5em {\lim}_{n\to \infty}\left(\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)\right)/{n}^{\beta }=\upgamma \right\}, \) and for any τ > 1 and η > 0, we get a lower bound of the Hausdorff dimension of the set \( \left\{x\kern0.5em \in \kern0.5em \left(0,1\right]:\kern1em {\lim}_{n\to \infty}\left(\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)\right)/{\tau}^n=\eta \right\}. \)  相似文献   

14.
Chebyshev determined $$\mathop {\min }\limits_{(a)} \mathop {\max }\limits_{ - 1 \le x \le 1} |x^n + a_1 x^{n - 1} + \cdots + a_n |$$ as 21?n , which is attained when the polynomial is 21?n T n(x), whereT n(x) = cos(n arc cosx). Zolotarev's First Problem is to determine $$\mathop {\min }\limits_{(a)} \mathop {\max }\limits_{ - 1 \le x \le 1} |x^n - n\sigma x^{n - 1} + a_2 x^{n - 2} + \cdots + a_n |$$ as a function ofn and the parameter σ and to find the extremal polynomials. He solved this in 1878. Another discussion was given by Achieser in 1928, and another by Erdös and Szegö in 1942. The case when 0≤|σ|≤ tan2(π/2n) is quite simple, but that for |σ|> tan2(π/2n) is quite different and very complicated. We give two new versions of the proof and discuss the change in character of the solution. Both make use of the Equal Ripple Theorem.  相似文献   

15.
Let (X, Λ) be a pair of random variables, where Λ is an Ω (a compact subset of the real line) valued random variable with the density functiong(Θ: α) andX is a real-valued random variable whose conditional probability function given Λ=Θ is P {X=x|Θ} withx=x 0, x1, …. Based onn independent observations ofX, x (n), we are to estimate the true (unknown) parameter vectorα=(α 1, α2, ...,αm) of the probability function ofX, Pα(X=∫ΩP{X=x|Θ}g(Θ:α)dΘ. A least squares estimator of α is any vector \(\hat \alpha \left( {X^{\left( n \right)} } \right)\) which minimizes $$n^{ - 1} \sum\limits_{i = 1}^n {\left( {P_\alpha \left( {x_i } \right) - fn\left( {x_i } \right)} \right)^2 } $$ wherex (n)=(x1, x2,…,x n) is a random sample ofX andf n(xi)=[number ofx i inx (n)]/n. It is shown that the least squares estimators exist as a unique solution of the normal equations for all sufficiently large sample size (n) and the Gauss-Newton iteration method of obtaining the estimator is numerically stable. The least squares estimators converge to the true values at the rate of \(O\left( {\sqrt {2\log \left( {{{\log n} \mathord{\left/ {\vphantom {{\log n} n}} \right. \kern-0em} n}} \right)} } \right)\) with probability one, and has the asymptotically normal distribution.  相似文献   

16.
For anyx ∈ r put $$c(x) = \overline {\mathop {\lim }\limits_{t \to \infty } } \mathop {\min }\limits_{(p,q\mathop {) \in Z}\limits_{q \leqslant t} \times N} t\left| {qx - p} \right|.$$ . Let [x0; x1,..., xn, ...] be an expansion of x into a continued fraction and let \(M = \{ x \in J,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n< \infty \}\) .ForxM put D(x)=c(x)/(1?c(x)). The structure of the set \(\mathfrak{D} = \{ D(x),x \in M\}\) is studied. It is shown that $$\mathfrak{D} \cap (3 + \sqrt 3 ,(5 + 3\sqrt 3 )/2) = \{ D(x^{(n,3} )\} _{n = 0}^\infty \nearrow (5 + 3\sqrt 3 )/2,$$ where \(x^{(n,3)} = [\overline {3;(1,2)_n ,1} ].\) This yields for \(\mu = \inf \{ z,\mathfrak{D} \supset (z, + \infty )\}\) (“origin of the ray”) the following lower bound: μ?(5+3√3)/2=5.0n>(5 + 3/3)/2=5.098.... Suppose a∈n. Put \(M(a) = \{ x \in M,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n = a\}\) , \(\mathfrak{D}(a) = \{ D(x),x \in M(a)\}\) . The smallest limit point of \(\mathfrak{D}(a)(a \geqslant 2)\) is found. The structure of (a) is studied completely up to the smallest limit point and elucidated to the right of it.  相似文献   

17.
Let Lf(x)=-\frac1w?i,j ?i(ai,j(·)?jf)(x)+V(x)f(x){\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)} with the non-negative potential V belonging to reverse H?lder class with respect to the measure ω(x)dx, where ω(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying l-1w(x)|x|2 £ ?ni,j=1ai,j(x)xixj £ lw(x)|x|2.{\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. } We obtain some estimates for VaL-a{V^{\alpha}\mathcal{L}^{-\alpha}} on the weighted L p spaces and we study the weighted L p boundedness of the commutator [b, Va L-a]{[b, V^{\alpha} \mathcal{L}^{-\alpha}]} when b ? BMOw{b\in BMO_\omega} and 0 < α ≤ 1.  相似文献   

18.
Generalizing two results of Rieger [8] and Selberg [10] we give asymptotic formulas for sums of type $${\matrix {\sum \limits_{n\leq x}\cr n\equiv l({\rm mod}k)\cr f_{\kappa}(n)\equiv s_{\kappa}({\rm mod}p_{\kappa})\cr (\kappa=1,\dots,r)\cr}}\qquad \chi(n)\qquad {\rm and} {\matrix {\sum \limits_{n\leq x}\cr n\equiv l({\rm mod}k)\cr f_{\kappa}(n)\equiv s_{\kappa}({\rm mod}p_{\kappa})\cr (\kappa=1,\dots,r)\cr}}\qquad \chi(n),$$ where χ is a suitable multiplicative function, f1,…, f r are “small” additive, prime-independent arithmetical functions and k, l are coprime. The proofs are based on an analytic method which consists of considering the Dirichlet series generated by $ \chi(n)z_{1}^{f_{1}(n)}\cdot... \cdot z_{r}^{f_{r}(n)},z_{1}\dots z_{r} $ complex.  相似文献   

19.
For an arbitrary element x with spectrum sp(x) in a Banach algebra with identity e ≠ 0 we define the upper (lower) spectral abscissa \(\mathop {\sigma + (x)}\limits_{( - )} = \mathop {\max }\limits_{(\min )} \operatorname{Re} \lambda ,\lambda \in sp(x)\) . With the aid of the spectral radius \(\rho (x) = \mathop {\max }\limits_{\lambda \in sp(x)} \left| \lambda \right| = \mathop {\lim }\limits_{n \to + \infty } \parallel x^n {{1 - } \mathord{\left/ {\vphantom {{1 - } n}} \right. \kern-0em} n}\) we prove the following bounds: γ?(x)?σ?(x)?Γ?(x)?+(x)?σ+(x)?γ+(x), Γ(±)(x)=(2δ(±))?1 δ 2 )(±) (±) 2 0 2 )(δ(±)≠0), γ(±)(x)= (±)ρδ(±)?δ(±), δ+?0, δ??0 ρ (±) δ = ρ(x+eδ(±)). We mention a case where equality is achieved, some corollaries,and discuss the sharpness of the bounds: for every ? > 0 there is a δ: ¦δ¦ ≥ρ 0 2 /2?, such that Δ: = ¦γ(±) x(±) x¦?ε and conversely, if the bounds are computed for some δ ≠ 0, then △ ≤ρ 0 2 /2 ¦δ¦. An example is considered.  相似文献   

20.
We consider a singular perturbation problem for a system of nonlinear Schr?dinger equations: $$ \begin{array}{l} -\varepsilon^2\Delta v_1 +V_1(x)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\varepsilon^2\Delta v_2 +V_2(x)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N), \end{array} \quad\quad\quad\quad\quad (*) $$ where N?=?2, 3, ?? 1, ?? 2, ?? > 0 and V 1(x), V 2(x): R N ?? (0, ??) are positive continuous functions. We consider the case where the interaction ?? > 0 is relatively small and we define for ${P\in{\bf R}^N}$ the least energy level m(P) for non-trivial vector solutions of the rescaled ??limit?? problem: $$ \begin{array}{l} -\Delta v_1 +V_1(P)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\Delta v_2 +V_2(P)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N). \end{array} \quad\quad\quad\quad\quad\quad (**) $$ We assume that there exists an open bounded set ${\Lambda\subset{\bf R}^N}$ satisfying $$ {\mathop {\rm inf} _{P\in\Lambda} m(P)} < {\mathop {\rm inf}_{P\in\partial\Lambda} m(P)}. $$ We show that (*) possesses a family of non-trivial vector positive solutions ${\{(v_{1\varepsilon}(x), v_{2\varepsilon} (x))\}_{\varepsilon\in (0,\varepsilon_0]}}$ which concentrates??after extracting a subsequence ?? n ?? 0??to a point ${P_0\in\Lambda}$ with ${m(P_0)={\rm inf}_{P\in\Lambda}m(P)}$ . Moreover (v 1?? (x), v 2?? (x)) converges to a least energy non-trivial vector solution of (**) after a suitable rescaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号