首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While many single station queues possess explicit forms for their equilibrium probabilities, queueing networks are more problematic. Outside of the class of product form networks (e.g., Jackson, Kelly, and BCMP networks), one must resort to bounds, simulation, asymptotic studies or approximations. By focusing on a class of two-station closed reentrant queueing networks under the last buffer first served (LBFS) policy, we show that non-product form equilibrium probabilities can be obtained. When the number of customer classes in the network is five or fewer, explicit solutions can be obtained. Otherwise, we require the roots of a characteristic polynomial and a matrix inversion that depend only on the network topology. The approach relies on two key points. First, under LBFS, the state space can be reduced to four dimensions independent of the number of buffers in the system. Second, there is a sense of spatial causality in the global balance equations that can then be exploited. To our knowledge, these two-station closed reentrant queueing networks under LBFS represent the first class of queueing networks for which explicit non-product form equilibrium probabilities can be constructed (for five customer classes or less), the generic form of the equilibrium probabilities can be deduced and matrix analytic approaches can be applied. As discussed via example, there may be other networks for which related observations can be exploited.  相似文献   

2.
In their book, Chaudhry and Templeton [6] present a unified approach to many problems on bulk queues. Using their analytical approach, we show how to numerically evaluate steady-state probabilities and moments for number in system (or queue) at each of three time epochs — postdeparture, prearrival and random — for several bulk and nonbulk queues. The approach can be used for other problems in queueing theory, and for similar problems in the theories of dams, inventories, etc. The present study extends the computational results available in tables, such as those produced by Hillier and Yu [12], and has several potential applications. The method proposed is computationally efficient, accurate, and stable. It accommodates high values of the queueing parameters. Sample numerical results and graphs are also presented.  相似文献   

3.
In this paper we derive a multidimensional version of the rate conservation law (RCL) for càdlàg processes of bounded variation. These results are then used to analyze queueing models which have a natural multidimensional characterization, such as priority queues. In particular the RCL is used to establish certain conservation laws between the idle probabilities for such queues. We use the relations to provide a detailed analysis of preemptive resume priority queues with M/G inputs. Special attention is paid to the validity of the so-called reduced service rate approximation.  相似文献   

4.
On queueing with customer impatience until the beginning of service   总被引:8,自引:0,他引:8  
Movaghar  Ali 《Queueing Systems》1998,29(2-4):337-350
We study queueing systems where customers have strict deadlines until the beginning of their service. An analytic method is given for the analysis of a class of such queues, namely, models. These are queues with state-dependent Poisson arrival process, exponential service times, multiple servers, FCFS service discipline, and general customer impatience. The state of the system is viewed to be the number of customers in the system. The principal measure of performance is the probability measure induced by the offered waiting time. Other measures of interest are the probability of missing deadline and the probability of blocking. Closed-form solutions are derived for the steady-state probabilities of the state process and some important modeling variables and parameters. The efficacy of our method is illustrated through a numerical example. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
A survey on retrial queues   总被引:7,自引:0,他引:7  
Yang  Tao  Templeton  J. G. C. 《Queueing Systems》1987,2(3):201-233
Queueing systems in which arriving customers who find all servers and waiting positions (if any) occupied may retry for service after a period of time are called retrial queues or queues with repeated orders. Retrial queues have been widely used to model many problems in telephone switching systems, telecommunication networks, computer networks and computer systems. In this paper, we discuss some important retrial queueing models and present their major analytic results and the techniques used. Our concentration is mainly on single-server queueing models. Multi-server queueing models are briefly discussed, and interested readers are referred to the original papers for details. We also discuss the stochastic decomposition property which commonly holds in retrial queues and the relationship between the retrial queue and the queue with server vacations.  相似文献   

6.
The generality and usefulness ofM/G/C/C state dependent queueing models for modelling pedestrian traffic flows is explored in this paper. We demonstrate that the departure process and the reversed process of these generalizedM/G/C/C queues is a Poisson process and that the limiting distribution of the number of customers in the queue depends onG only through its mean. Consequently, the models developed in this paper are useful not only for the analysis of pedestrian traffic flows, but also for the design of the physical systems accommodating these flows. We demonstrate how theM/G/C/C state dependent model is incorporated into the modelling of large scale facilities where the blocking probabilities in the links of the network can be controlled. Finally, extensions of this work to queueing network applications where blocking cannot be controlled are also presented, and we examine an approximation technique based on the expansion method for incorporating theseM/G/C/C queues in series, merge, and splitting topologies of these networks.  相似文献   

7.
We give an almost complete classification of ergodicity and transience conditions for a general multi-queue system with the following features: arrivals form Poisson streams and there are various routing schemes for allocating arrivals to queues; the servers can be configured in a variety of ways; completed jobs can feed back into the system; the exponential service times and feedback probabilities depend upon the configuration of the servers (this model includes some types of multi-class queueing system); switching between service regimes is instantaneous. Several different levels of control of the service regimes are considered. Our results for the N-queue system require randomisation of service configurations but we have studied the two queue system in situations where there is less control. We use the semi-martingale methods described in Fayolle, Malyshev and Menshikov [3] and our results generalise Kurkova [8] and complement Foley and McDonald [4] and [5]. AMS 2000 subject classification: Primary: 90B22; Secondary: 60J10 90B15  相似文献   

8.
Large sample inference from single server queues   总被引:1,自引:0,他引:1  
Problems of large sample estimation and tests for the parameters in a single server queue are discussed. The service time and the interarrivai time densities are assumed to belong to (positive) exponential families. The queueing system is observed over a continuous time interval (0,T] whereT is determined by a suitable stopping rule. The limit distributions of the estimates are obtained in a unified setting, and without imposing the ergodicity condition on the queue length process. Generalized linear models, in particular, log-linear models are considered when several independent queues are observed. The mean service times and the mean interarrival times after appropriate transformations are assumed to satisfy a linear model involving unknown parameters of interest, and known covariates. These models enhance the scope and the usefulness of the standard queueing systems.Partially supported by the U. S. Army Research Office through the Mathematical Sciences Institute of Cornell University.  相似文献   

9.
A practical method of calculating the distribution of the number of customers in the single server queueing system with inhomogeneous arrival rate and discrete service time distribution is proposed. The system is formulated as an inhomogeneous Markov chain in discrete time, leading to recurrence relations for the state probabilities. The recurrence relations are then solved numerically. Various measures of performance, such as mean and variance of the number of customers in the system and virtual waiting time can be obtained from these results. Examples are presented to demonstrate the scope of the method, including time-dependent behaviour of homogeneous queues; cyclic behaviour of queues with cyclic arrival rates; and a previously published study of an airport runway in which the author had to resort to crude interpolation to obtain results. The method can be further extended to provide a reasonably accurate approximation for some systems with continuous distributions of service times.  相似文献   

10.
《Optimization》2012,61(3):445-453
This paper studies the transient behaviour of tandem queueing system consisting of an arbitrary number r of queues in series with infinite server service facility at each queue. Poisson arrivals with time dependent parameter and exponential service times have been assumed. Infinite server queues realistically describe those queues in which sufficient service capacity exist to prevent virtually any waiting by the customer present. The model is suitable for both phase type service as well services in series. Very elegant solutions have been obtained and it has been shown that if the queue sizes are initially independent and Poisson then they remain independent and Poisson for all t.  相似文献   

11.
To design queueing systems in an optimal way, one needs derivatives of the main queueing measures, such as the average number in the system and the throughput. In this paper we show how such measures can be obtained in a Markovian environment. For simplicity, we restrict our attention to queues with Poisson arrivals, having either a finite buffer capacity or a finite calling population. For these queues, we first determine the derivatives of their steady state probabilities, which allow us to find the derivatives of throughput and average number in the system. A number of examples show how these derivatives can be used for the purpose of optimization.  相似文献   

12.
M/G/1 queues with server vacations have been studied extensively over the last two decades. Recent surveys by Boxma [3], Doshi [5] and Teghem [14] provide extensive summary of literature on this subject. More recently, Shanthikumar [11] has generalized some of the results toM/G/1 type queues in which the arrival pattern during the vacations may be different from that during the time the server is actually working. In particular, the queue length at the departure epoch is shown to decompose into two independent random variables, one of which is the queue length at the departure epoch (arrival epoch, steady state) in the correspondingM/G/1 queue without vacations. Such generalizations are important in the analysis of situations involving reneging, balking and finite buffer cyclic server queues. In this paper we consider models similar to the one in Shanthikumar [11] but use the work in the system as the starting point of our investigation. We analyze the busy and idle periods separately and get conditional distributions of work in the system, queue length and, in some cases, waiting time. We then remove the conditioning to get the steady state distributions. Besides deriving the new steady state results and conditional waiting time and queue length distributions, we demonstrate that the results of Boxma and Groenendijk [2] follow as special cases. We also provide an alternative approach to deriving Shanthikumar's [11] results for queue length at departure epochs.  相似文献   

13.
Altman  Eitan  Gaujal  Bruno  Hordijk  Arie 《Queueing Systems》2000,36(4):303-325
We consider in this paper the optimal open-loop control of vacations in queueing systems. The controller has to take actions without state information. We first consider the case of a single queue, in which the question is when should vacations be taken so as to minimize, in some general sense, workloads and waiting times. We then consider the case of several queues, in which service of one queue constitutes a vacation for others. This is the optimal polling problem. We solve both problems using new techniques from [2,4] based on multimodularity.  相似文献   

14.
Bramson  Maury 《Queueing Systems》1998,30(1-2):89-140
Heavy traffic limits for multiclass queueing networks are a topic of continuing interest. Presently, the class of networks for which these limits have been rigorously derived is restricted. An important ingredient in such work is the demonstration of state space collapse. Here, we demonstrate state space collapse for two families of networks, first-in first-out (FIFO) queueing networks of Kelly type and head-of-the-line proportional processor sharing (HLPPS) queueing networks. We then apply our techniques to more general networks. To demonstrate state space collapse for FIFO networks of Kelly type and HLPPS networks, we employ law of large number estimates to show a form of compactness for appropriately scaled solutions. The limits of these solutions are next shown to satisfy fluid model equations corresponding to the above queueing networks. Results from Bramson [4,5] on the asymptotic behavior of these limits then imply state space collapse. The desired heavy traffic limits for FIFO networks of Kelly type and HLPPS networks follow from this and the general criteria set forth in the companion paper Williams [41]. State space collapse and the ensuing heavy traffic limits also hold for more general queueing networks, provided the solutions of their fluid model equations converge. Partial results are given for such networks, which include the static priority disciplines. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
This paper considers a class of two discrete-time queues with infinite buffers that compete for a single server. Tasks requiring a deterministic amount of service time, arrive randomly to the queues and have to be served by the server. One of the queues has priority over the other in the sense that it always attempts to get the server, while the other queue attempts only randomly according to a rule that depends on how long the task at the head of the queue has been waiting in that position. The class considered is characterized by the fact that if both queues compete and attempt to get the server simultaneously, then they both fail and the server remains idle for a deterministic amount of time. For this class we derive the steady-state joint generating function of the state probabilities. The queueing system considered exhibits interesting behavior, as we demonstrate by an example.  相似文献   

16.
In this paper we first obtain, in a unified way, closed-form analytic expressions in terms of roots of the so-called characteristic equation (c.e.), and then discuss the exact numerical solutions of steady-state distributions of (i) actual queueing time, (ii) virtual queueing time, (iii) actual idle time, and (iv) interdeparture time for the queueGI/R/1, whereR denotes the class of distributions whose Laplace-Stieltjes transforms (LSTs) are rational functions (ratios of a polynomial of degree at mostn to a polynomial of degreen). For the purpose of numerical discussions of idle- and interdeparture-time distributions, the interarrival-time distribution is also taken to belong to the classR. It is also shown that numerical computations of the idle-time distribution ofR/G/1 queues can be done even ifG is not taken asR. Throughout the discussions it is assumed that the queue discipline is first-come-first-served (FCFS). For the tail of the actual queueing-time distribution ofGI/R/1, approximations in terms of one or more roots of the c.e. are also discussed. If more than one root is used, they are taken in ascending order of magnitude. Numerical aspects have been tested for a variety of complex interarrival- and service-time distributions. The analysis is not restricted to generalized distributions with phases such as Coxian-n (C n ), but also covers nonphase type distributions such as uniform (U) and deterministic (D). Some numerical results are also presented in the form of tables and figures. It is expected that the results obtained from the present study should prove to be useful not only to practitioners, but also to queueing theorists who would like to test the accuracies of inequalities, bounds or approximations.  相似文献   

17.
We consider the Poisson equations for denumerable Markov chains with unbounded cost functions. Solutions to the Poisson equations exist in the Banach space of bounded real-valued functions with respect to a weighted supremum norm such that the Markov chain is geometrically ergodic. Under minor additional assumptions the solution is also unique. We give a novel probabilistic proof of this fact using relations between ergodicity and recurrence. The expressions involved in the Poisson equations have many solutions in general. However, the solution that has a finite norm with respect to the weighted supremum norm is the unique solution to the Poisson equations. We illustrate how to determine this solution by considering three queueing examples: a multi-server queue, two independent single server queues, and a priority queue with dependence between the queues.  相似文献   

18.
This paper develops the steady-state behaviour of a queueing model with K-parallel input sources, finite and infinite waiting space and feedback probabilities. The steady state of the system is derived through equations governing the model in terms of the traffic intensities. Probability distribution functions for the number of units waiting for service in each queue are obtained. The mean number of units in the system is also obtained. Finally, the model is generalized to increase the number of parallel servers in the final phase. Also the number of stages of service is increased in the first phase. The model is illustrated by suitable practical applications.  相似文献   

19.
van Houdt  B.  Lenin  R.B.  Blondia  C. 《Queueing Systems》2003,45(1):59-73
This paper presents an algorithmic procedure to calculate the delay distribution of (im)patient customers in a discrete time D-MAP/PH/1 queue, where the service time distribution of a customer depends on his waiting time. We consider three different situations: impatient customers in the waiting room, impatient customers in the system, that is, if a customer has been in the waiting room, respectively, in the system for a time units it leaves the waiting room, respectively, the system. In the third situation, all customers are patient – that is, they only leave the system after completing service. In all three situations the service time of a customer depends upon the time he has spent in the waiting room. As opposed to the general approach in many queueing systems, we calculate the delay distribution, using matrix analytic methods, without obtaining the steady state probabilities of the queue length. The trick used in this paper, which was also applied by Van Houdt and Blondia [J. Appl. Probab., Vol. 39, No. 1 (2002) pp. 213–222], is to keep track of the age of the customer in service, while remembering the D-MAP state immediately after the customer in service arrived. Possible extentions of this method to more general queues and numerical examples that demonstrate the strength of the algorithm are also included.  相似文献   

20.
In the area of optimal design and control of queues, the N-policy has received great attention. A single server queueing system with system disaster is considered where the server waits till N customers accumulate in the queue and upon the arrival of Nth customer the server begins to serve the customers until the system becomes idle or the occurrence of disaster whichever happens earlier. The system size probabilities in transient state are obtained in closed form using generating functions and steady-state system size probabilities are derived in closed form using generating functions and continued fractions. Further, the mean and variance for the number of customers in the system are derived for both transient and steady states and these results are deduced for the specific models. Time-dependent busy period distribution is also obtained. Numerical illustrations are also shown to visualize the system effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号