首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is the first of a three-part series that studies the formulation of 3-node, 9-dof membrane elements with normal-to-element-plane rotations (the so-called drilling freedoms) within the context of parametrized variational principles. These principles supply a unified basis for several advanced element-construction techniques; in particular: the free formulation (FF), the extended free formulation (EFF) and the assumed natural deviatoric strain (ANDES) formulation. In Part I we construct an element of this type using the EFF. This derivation illustrates the basic steps in the application of that formulation to the construction of high-performance, rank-sufficient, nonconforming elements with corner rotations. The element is initially given the twelve degress of freedom of the linear strain triangle (LST), which allows the displacement expansion to be a complete quadratic in each component. The expansion basis contains the six linear basic functions and six energy-orthogonal quadratic higher-order functions. Three degrees of freedom, defined as the midpoint deviations from linearity along the triangle-median directions, are eliminated by kinematic constraints. The remaining hierarchical midpoint freedoms are transformed to corner rotations. The performance of the resulting element is evaluated in Part III.  相似文献   

2.
曹礼群 《计算数学》1994,16(4):362-371
p-version有限元的快速高精度算法曹礼群(湘潭大学)THEFASTp-VERSIONFINITEELEMENTMETHODWITHHIGHACCURACY¥CaoLi-qun(XiangtanUniversity)Abstract:Inthis...  相似文献   

3.
Summary. Interpolation error estimates for a modified 8-node serendipity finite element are derived in both regular and degenerate cases, the latter of which includes the case when the element is of triangular shape. For defined over a quadrilateral K, the error for the interpolant is estimated as , where in the regular case and in the degenerate case, respectively. Thus, the obtained error estimate in the degenerate case is of the same quality as in the regular case at least for . Results for some related elements are also given. Received June 2, 1997 / Published online March 16, 2000  相似文献   

4.
The theory of Cosserat points is the basis of a 3D finite element formulation allowing for large deformations in structural mechanics, that recently was presented by [1]. First attempts have revealed, that this formulation is free of showing undesired locking or hourglassing-phenomena. It additionally shows excellent behaviour for any type of incompressible material, for large deformations and sensitive structures such as plates or shells. Within the theory of Cosserat points, the position vectors X and x , are described through director vectors D i and d i by use of trilinear shape functions Ni for an 8-node brick element. The special choice of shape functions Ni allows for director vectors with which the deformation can be split into a homogeneous and an inhomogeneous part. This split enables the use of stiffnesses that correspond to different deformation modes. Analytical solutions to the inhomogeneous deformation modes are incorporated in the formulation and avoid the undesired phenomena. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
节点应力连续的四边形单元   总被引:2,自引:0,他引:2  
节点应力连续的四边形单元Q4-CNS是一种基于单位分解理论的混合的有限元无网格法.Q4-CNS可以视作FE-LSPIM QUAD4的发展.Q4-CNS形函数的导数在节点处是连续的,因此可以自然的得到节点应力,而不需要使用节点应力磨平算法.数值实验表明,与传统四边形单元(QUAD4)相比,Q4-CNS具有更好的计算精度和更高的收敛速度.在扭曲网格下,Q4-CNS也能取得满意的数值精度.然而,QUAD4的数值精度则会随着网格的扭曲明显的变差.基于Kirchhoff-Love假设的非协调板单元计算中,不仅要求形函数在单元的交界面上要保持C0连续性,而且要求形函数在节点处具有C1连续性,所以在任意的四边形单元上构造满足插值条件的非协调板单元形函数较为困难.Q4-CNS形函数的导数在节点处是连续的,所以Q4-CNS在求解基于Kirchhoff-Love假设的板单元问题中具有潜在的应用价值.  相似文献   

6.
In this paper, a cubature formula over polygons is proposed and analysed. It is based on an eight-node quadrilateral spline finite element [C.-J. Li, R.-H. Wang, A new 8-node quadrilateral spline finite element, J. Comp. Appl. Math. 195 (2006) 54–65] and is exact for quadratic polynomials on arbitrary convex quadrangulations and for cubic polynomials on rectangular partitions. The convergence of sequences of the above cubatures is proved for continuous integrand functions and error bounds are derived. Some numerical examples are given, by comparisons with other known cubatures.  相似文献   

7.
This is the second article in a three-part series on the construction of 3-node, 9-dof membrane elements with normal-to-its-plane rotational freedoms (the so-called drilling freedoms) using parametrized variational principles. In this part, one such element is derived within the context of the assumed natural deviatoric strain (ANDES) formulation. The higher-order strains are obtained by constructing three parallel-to-sides pure-bending modes from which natural strains are obtained at the corner points and interpolated over the element. To attain rank sufficiency, an additional higher-order “torsional” mode, corresponding to equal hierarchical rotations at each corner with all other motions precluded, is incorporated. The resulting formulation has five free parameters. When these parameters are optimized against pure bending by energy balance methods, the resulting element is found to coalesce with the optimal EFF element derived in Part I. Numerical integration as a strain filtering device is found to play a key role in this achievement.  相似文献   

8.
本文建议了一种用于分析Stokes流动的罚-杂交变分原理,其中,偏应力张量和静水压力事先满足线动量平衡.建立了相应的有限元模型.由此,压力可在列式过程中消去,使得有限元矩阵方程仅以节点速度作为唯一的求解未知量.推导了几种4-节点和8-节点四边形单元.通过数值算例,显示了单元性能.  相似文献   

9.
Metallic materials often exhibit a complex microstructure with varying material properties in the different phases. Of major importance in mechanical engineering is the evolution of the austenitic and martensitic phases in steel. The martensitic transformation can be induced by heat treatment or by plastic surface deformation at low temperatures. A two dimensional elastic phase field model for martensitic transformations considering several martensitic orientation variants to simulate the phase change at the surface is introduced in [1]. However here, only one martensitic orientation variant is considered for the sake of simplicity. The separation potential is temperature dependent. Therefore, the coefficients of the Landau polynomial are identified by results of molecular dynamics (MD) simulations for pure iron [1]. The resulting separation potential is applied to analyse the mean interface velocity with respect to temperature and load. The interface velocity is computed by use of the dissipative part to the configurational forces balance as suggested in [3]. The model is implemented in the finite element code FEAP using standard 4-node elements with bi-linear shape functions. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
本文基于势能~杂交/混合有限元格式,导出了具有分离转动变量的4节点四边形Reissner-Mindlin板元MP4、MP4a和圆柱壳元MCS4.所有这些单元都显示了良好的收敛性;不含有多余机动模式;当趋于薄板/壳极限时,不存在“自锁”现象.本文还指明了在C~0和C~1连续的单元列式中使用的修正泛函,存在相互联系.本文的方法可导出Prathap的一致场列式,也可导出RIT/SRIT的位移协调模型.  相似文献   

11.
Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic Poisson equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping operators execute data transfer between the grids. The CGP framework is constructed upon spatial and temporal discretization schemes. This framework has been established for finite volume/difference discretizations as well as explicit time integration methods. In this article we present for the first time a version of CGP for finite element discretizations, which uses a semi-implicit time integration scheme. The mapping functions correspond to the finite-element shape functions. With the novel data structure introduced, the mapping computational cost becomes insignificant. We apply CGP to pressure-correction schemes used for the incompressible Navier-Stokes flow computations. This version is validated on standard test cases with realistic boundary conditions using unstructured triangular meshes. We also pioneer investigations of the effects of CGP on the accuracy of the pressure field. It is found that although CGP reduces the pressure field accuracy, it preserves the accuracy of the pressure gradient and thus the velocity field, while achieving speedup factors ranging from approximately 2 to 30. The minimum speedup occurs for velocity Dirichlet boundary conditions, while the maximum speedup occurs for open boundary conditions.  相似文献   

12.
A study of design velocity field computation for shape optimal design   总被引:10,自引:0,他引:10  
Design velocity field computation is an important step in computing shape design sensitivity coefficients and updating a finite element mesh in the shape design optimization process. Applying an inappropriate design velocity field for shape design sensitivity analysis and optimization will yield inaccurate sensitivity results or a distorted finite element mesh, and thus fail in achieving an optimal solution. In this paper, theoretical regularity and practical requirements of the design velocity field are discussed. The crucial step of using the design velocity field to update the finite element mesh in the design optimization process is emphasized. Available design velocity field computation methods in the literature are summarized and their applicability for shape design sensitivity analysis and optimization is discussed. Five examples are employed to discuss applicability of these methods. It was found that a combination of isoparametric mapping and boundary displacement methods is ideal for the design velocity field computation.  相似文献   

13.
弹性力学Hamilton正则方程和Hamilton混合元的等效刚度系数矩阵,均具有直观的辛特性.基于H R变分原理和弹性力学保辛理论建立的对偶变量块体混合元,其等效刚度系数矩阵同样具有直观的辛特性.根据对偶变量块体混合元列式,可直接建立问题的控制方程,进行混合法求解.同时,通过对偶变量块体混合元列式可以导出对偶变量块体位移元列式,建立问题的控制方程后,可先求位移的解.数值实例表明:线性8结点对偶变量块体位移减缩积分元的各力学量的收敛速度均衡、收敛过程稳定、结果精度高,其应力变量的收敛速度与传统的20结点位移协调减缩积分元接近.对偶变量块体位移元具有普适性.  相似文献   

14.
A posteriori error estimates for a nonlinear parabolic problem are introduced. A fully discrete scheme is studied. The space discretization is based on a concept of hierarchical finite element basis functions. The time discretization is done using singly implicit Runge-Kutta method (SIRK). The convergence of the effectivity index is proven.  相似文献   

15.
A Galerkin/least-square finite element formulation (GLS) is used to study mixed displacement-pressure formulation of nearly incompressible elasticity. In order to fully incorporate the effect of the residual-based stabilized term to the weak form, the second derivatives of shape functions were also derived and accounted, which can accurately discretize the residual term and improve the GLS method as well as the Petrov–Galerkin method. The numerical studies show that improved stabilized method can effectively remove volumetric locking problem for incompressible elasticity and stabilize the pressure field for stokes flow. When apply GLS to study material nonlinearity, the derivative of tangent modulus at the integration point will be required. Both advantage and disadvantage of using GLS method for nearly incompressible elasticity/stokes flow were demonstrated.  相似文献   

16.
Simon Schmidt  Ralf Müller 《PAMM》2017,17(1):561-562
We study the martensitic transformation with a phase field model, where we consider the Bain transformation path in a small strain setting. For the order parameter, interpolating between an austenitic parent phase and martensitic phases, we use a Ginzburg-Landau evolution equation, assuming a constant mobility. In [1], a temperature dependent separation potential is introduced. We use this potential to extend the model in [2], by considering a transient temperature field, where the temperature is introduced as an additional degree of freedom. This leads to a coupling of both the evolution equation of the order parameter and the mechanical field equations (in terms of thermal expansion) with the heat equation. The model is implemented in FEAP as a 4-node element with bi-linear shape functions. Numerical examples are given to illustrate the influence of the temperature on the evolution of the martensitic phase. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Recently, a 4-node quadrilateral membrane element AGQ6-I, has been successfully developed for analysis of linear plane problems. Since this model is formulated by the quadrilateral area coordinate method (QACM), a new natural coordinate system for developing quadrilateral finite element models, it is much less sensitive to mesh distortion than other 4-node isoparametric elements and free of various locking problems that arise from irregular mesh geometries. In order to extend these advantages of QACM to nonlinear applications, the total Lagrangian (TL) formulations of element AGQ6-I was established in this paper, which is also the first time that a plane QACM element being applied in the implicit geometrically nonlinear analysis. Numerical examples of geometrically nonlinear analysis show that the presented formulations can prevent loss of accuracy in severely distorted meshes, and therefore, are superior to those of other 4-node isoparametric elements. The efficiency of QACM for developing simple, effective and reliable serendipity plane membrane elements in geometrically nonlinear analysis is demonstrated clearly.  相似文献   

18.
The hp-version of the finite element method based on a triangular p-element is applied to free vibration of the orthotropic triangular and rectangular plates. The element's hierarchical shape functions, expressed in terms of shifted Legendre orthogonal polynomials, is developed for orthotropic plate analysis by taking into account shear deformation, rotary inertia, and other kinematics effects. Numerical results of frequency calculations are found for the free vibration of the orthotropic triangular and rectangular plates with the effect of the fiber orientation and plate boundary conditions. The results are very well compared to those presented in the literature.  相似文献   

19.
三角形REISSNER-MINDLIN板元   总被引:1,自引:0,他引:1  
本文提出构造无自锁现象的Reissuer-Mindlin板元的一个一般性方法.此方法将剪切应变用它的适当的插值多项式代替,当板厚趋于零时这对应于插值点的Kirchhoff条件,因而单元无自锁现象.根据这种方法我们构造两个三角形元──一个3节点元和一个6节点元,并给出数值结果.  相似文献   

20.
In order to consider growing expectations on vibro-acoustic performance of products within the design process, reliable simulation tools are necessary. In this paper, we present a approach for the simulation of laminated shells composed of elastic and poroelastic layers. We assume that the shell is given by a parametrization, which allows us to work witn the exact geometry. The three-dimensional problem is reduced to a two-dimensional one, by choosing a set of through-the-thickness functions for each quantity and through-the-thickness integration. The implemented high order finite element approach for the reduced problem on the reference surface relays on hierarchical shape functions. In a numerical example, we show the influence of poroelastic materials attached to a aluminium shell. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号