首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
图的符号星k控制数   总被引:3,自引:0,他引:3  
引入了图的符号星k控制的概念.设G=(V,E)是一个图,一个函数f:E→{-1,+1},如果∑e∈E[v]f(e)≥1对于至少k个顶点v∈V(G)成立,则称f为图G的一个符号星k控制函数,其中E(v)表示G中与v点相关联的边集.图G的符号星k控制数定义为γkss(G)=min{∑e∈Ef(e)|f为图G的符号星k控制函数}.在本文中,我们主要给出了一般图的符号星k控制数的若干下界,推广了关于符号星控制的一个结果,并确定路和圈的符号星k控制数.  相似文献   

2.
设G=(V,E)是一个图,u∈V,则E(u)表示u点所关联的边集.一个函数f:E→{-1,1}如果满足■f(e)≥1对任意v∈V成立,则称f为图G的一个符号星控制函数,图G的符号星控制数定义为γ'_(ss)(G)=min{■f(e):f为图G的一个符号星控制函数}.给出了几类特殊图的符号星控制数,主要包含完全图,正则偶图和完全二部图.  相似文献   

3.
设G=(V,E)是一个图,一个函数f:V→{-1,+1}如果满足Σv∈N[υ]f(ν)≥1对于每个点u∈V成立,则称f为图G的一个符号控制函数,图G的符号控制数γs(G)定义为γs(G)=min{Σv∈vf(v)|f为图G的符号控制函数},类似地,可定义图G的上符号控制数Γs(G).研究了几类特殊图的符号控制问题,获得了完全l等部图和乘积图P_3×P_n的符号控制数,并确定了P_2×P_n和P_3×P_n的上符号控制数.  相似文献   

4.
图的逆符号边控制数的上界   总被引:1,自引:0,他引:1  
设G=(V,E)是一个图,对于图G的-个函数f:E→{-1,1},如果对任意e∈E(G),均有∑f(e')≤1,则称,为图G的一个逆符号边控制函数.图G的逆符号边控制数(~γ's)(G)=e'∈N[e]max{∑,(e)|f,为图G的一个逆符号边控制函数}.本文在定义了逆符号边控制数的基础上,得到了图e∈E的逆符号边控制数的几个上界.  相似文献   

5.
设G=(V,E)是一个图,对于图G的一个函数f:E→{-1,1},如果对任意e∈E(G),均有Σe′∈N[e]f(e′)≤1,则称f为图G的一个逆符号边控制函数.图G的逆符号边控制数γ′s(G)=max{Σe∈E(G)f(e)|f为图G的一个逆符号边控制函数}.在逆符号边控制数定义基础上,得到了所有轮图和扇图的逆符号边控制数.  相似文献   

6.
设G=(V,E)是一个图,对于图G的一个函数f:E→{-1,1},如果对任意e∈E(G),均有Σe′∈N[e]f(e′)≤1,则称f为图G的一个逆符号边控制函数.图G的逆符号边控制数γ′s(G)=max{Σe∈E(G)f(e)|f为图G的一个逆符号边控制函数}.在逆符号边控制数定义基础上,得到了所有轮图和扇图的逆符号边控制数.  相似文献   

7.
设G=(V,E)是一个图,一个函数f:E→{-1,+1},如果对于G中至少k条边e有sum from e'∈N[e]f(e')≥1成立,则称f为图G的一个k符号边控制函数.一个图的k符号边控制数定义为γ_(ks)/(G)=min{∑_(e∈E(G))f(e)|f为图G的一个k符号边控制函数}.主要给出了一个图G的k符号边控制数γ_(ks)/(G)=min{∑_(e∈E(G))f(e)|f为图G的一个k符号边控制函数}.主要给出了一个图G的k符号边控制数γ_(ks)/(G)的若干新下限,并确定了路和圈的k符号边控制数.  相似文献   

8.
设G=(V,E)是一个简单图,一个函数f:E→{-1,1},若满足∑_(e′∈N[e])f(e)≥1对E(G)中的每个边e都成立,则称f是图G的一个符号边控制函数,图G的符号边控制数定义为γ′_s(G)=min{∑_(e∈E)f(e)|f是G的符号边控制函数}.给出了联图C_(2k)+C_(2k)的符号边控制数.  相似文献   

9.
引入了图的符号星k限定控制的概念,从而求出了星图和轮图的符号星k控制数.还刻画了满足γ′_(ss)(G)=1/2(2r+s)的图,基中γ′_(ss)(G)表示图G的符号星控制数.最后对图的符号星部分控制的已有结果作了改进.  相似文献   

10.
完全图全符号控制数的较小上界和下确界   总被引:2,自引:0,他引:2  
设图G=G(V,E),令函数f∶V∪E→{-1,1},f的权w(f)=∑x∈V∪Ef[x],对V∪E中任一元素,定义f[x]=∑y∈NT[x]f(y),这里NT[x]表示V∪E中x及其关联边、邻点的集合.图G的全符号控制函数为f∶V∪E→{-1,1},满足对所有的x∈V∪E有f[x]1,图G的全符号控制数γT(G)就是图G上全符号控制数的最小权,称其f为图G的γT-函数.本文得到了完全图全符号控制数的一个较小上界和下确界.  相似文献   

11.
引入了图的好符号星控制的概念,求出了欧拉图、完全二部图、完全图和轮图的好符号星控制数,并改进了图的符号星控制数的两个上界.  相似文献   

12.
近年来,研究图的符号星控制数颇引人注目,研究了完全二部图的符号星控制数.  相似文献   

13.
关于图符号的边控制 (英)   总被引:6,自引:0,他引:6  
设γ's(G)和γ'ι(G)分别表示图G的符号边和局部符号边控制数,本文主要证明了:对任何n阶图G(n≥4),均有γ's(G)≤[11/6n-1]和γ'ι(G)≤2n-4成立,并提出了若干问题和猜想.  相似文献   

14.
图G的符号控制数γs(G)有着许多重要的应用背景,因而确定其精确值有重要意义.Cm表示m个顶点的圈,n-Cm和n·Cm分别表示恰有一条公共边或一个公共顶点的n个Cm的拷贝.给出了n-Cm和n·Cm的符号控制数.  相似文献   

15.
A lower bound on the total signed domination numbers of graphs   总被引:4,自引:0,他引:4  
Let G be a finite connected simple graph with a vertex set V(G)and an edge set E(G). A total signed domination function of G is a function f:V(G)∪E(G)→{-1,1}.The weight of f is W(f)=∑_(x∈V)(G)∪E(G))f(X).For an element x∈V(G)∪E(G),we define f[x]=∑_(y∈NT[x])f(y).A total signed domination function of G is a function f:V(G)∪E(G)→{-1,1} such that f[x]≥1 for all x∈V(G)∪E(G).The total signed domination numberγ_s~*(G)of G is the minimum weight of a total signed domination function on G. In this paper,we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values ofγ_s~*(G)when G is C_n and P_n.  相似文献   

16.
设γ_s~*(G)表示图G的点-边全符号控制数,本文给出了偶阶完全图的点-边全符号控制数的精确值.  相似文献   

17.
$f: E(G)\rightarrow\{-1,1\}$称为图$G =(V,E)$的一个符号边控制函数 (简称SEDF),如果$f[e]=f(N[e])=\sum_{e''\in N[e]}f(e'')\geq1$对于图$G$的每条边$e\in E$都成立. $w(f)=\sum_{e\in E}f(e)$称为函数$f$的权. $G$的符号边控制数$\gamma_{s}\,''(G)$是指$G$的所有符号边控制函数的最小权.本文对完全多部图的符号边控制数进行研究.对于完全$r$-部图, 当$r$为偶数并且各部的顶点数相同的情况下,我们得到了这一参数的若干下界和上界.  相似文献   

18.
The open neighborhood N G (e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If for each eE(G), then f is called a signed edge total dominating function of G. The minimum of the values , taken over all signed edge total dominating function f of G, is called the signed edge total domination number of G and is denoted by γ st ′(G). Obviously, γ st ′(G) is defined only for graphs G which have no connected components isomorphic to K 2. In this paper we present some lower bounds for γ st ′(G). In particular, we prove that γ st ′(T) ⩾ 2 − m/3 for every tree T of size m ⩾ 2. We also classify all trees T with γ st ′(T). Research supported by a Faculty Research Grant, University of West Georgia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号