首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a class of absolutely continuous bivariate exponential distributions, generated from quadratic forms of standard multivariate normal variates.This class is quite flexible and tractable, since it is regulated by two parameters only, derived from the matrices of the quadratic forms: the correlation and the correlation of the squares of marginal components. A simple representation of the whole class is given in terms of 4-dimensional matrices. Integral forms allow evaluating the distribution function and the density function in most of the cases.The class is introduced as a subclass of bivariate distributions with chi-square marginals; bounds for the dimension of the generating normal variable are underlined in the general case.Finally, we sketch the extension to the multivariate case.  相似文献   

2.
We consider the class of multivariate distributions that gives the distribution of the sum of uncorrelated random variables by the product of their marginal distributions. This class is defined by a representation of the assumption of sub-independence, formulated previously in terms of the characteristic function and convolution, as a weaker assumption than independence for derivation of the distribution of the sum of random variables. The new representation is in terms of stochastic equivalence and the class of distributions is referred to as the summable uncorrelated marginals (SUM) distributions. The SUM distributions can be used as models for the joint distribution of uncorrelated random variables, irrespective of the strength of dependence between them. We provide a method for the construction of bivariate SUM distributions through linking any pair of identical symmetric probability density functions. We also give a formula for measuring the strength of dependence of the SUM models. A final result shows that under the condition of positive or negative orthant dependence, the SUM property implies independence.  相似文献   

3.
A multivariate skew normal distribution   总被引:1,自引:0,他引:1  
In this paper, we define a new class of multivariate skew-normal distributions. Its properties are studied. In particular we derive its density, moment generating function, the first two moments and marginal and conditional distributions. We illustrate the contours of a bivariate density as well as conditional expectations. We also give an extension to construct a general multivariate skew normal distribution.  相似文献   

4.
This paper shows that multivariate distributions can be characterized as maximum entropy (ME) models based on the well-known general representation of density function of the ME distribution subject to moment constraints. In this approach, the problem of ME characterization simplifies to the problem of representing the multivariate density in the ME form, hence there is no need for case-by-case proofs by calculus of variations or other methods. The main vehicle for this ME characterization approach is the information distinguishability relationship, which extends to the multivariate case. Results are also formulated that encapsulate implications of the multiplication rule of probability and the entropy transformation formula for ME characterization. The dependence structure of multivariate ME distribution in terms of the moments and the support of distribution is studied. The relationships of ME distributions with the exponential family and with bivariate distributions having exponential family conditionals are explored. Applications include new ME characterizations of many bivariate distributions, including some singular distributions.  相似文献   

5.
Matrix-valued distributions are used in continuous multivariate analysis to model sample data matrices of continuous measurements; their use seems to be neglected for binary, or more generally categorical, data. In this paper we propose a matrix-valued Bernoulli distribution, based on the log-linear representation introduced by Cox [The analysis of multivariate binary data, Appl. Statist. 21 (1972) 113-120] for the Multivariate Bernoulli distribution with correlated components.  相似文献   

6.
This paper deals with multivariate stable distributions. Press has given an explicit algebraic representation of characteristic functions of such distributions [J. Multivariate Analysis2 (1972), 444–462]. We present counter-examples and correct proofs of some of the statements of Press. The properties of multivariate stable distributions, connected with the spectral measure Γ, present in the expression of the characteristic function, are studied.  相似文献   

7.
A new class of bivariate distributions (NBD) was recently introduced by Sarhan and Balakrishnan [A.M. Sarhan, N. Balakrishnan, A new class of bivariate distributions and its mixture, J. Multivariate Anal. 98 (2007) 1508-1527]. In this note, we give the joint survival function of a multivariate extension of the NBD, which is not an absolutely continuous multivariate distribution, and its marginal and extreme order statistics distributions are also derived. The multivariate ageing and dependence properties of the proposed n-dimensional distribution are also discussed, and then we analyze the stochastic ageing of its marginals and its minimum and maximum order statistics.  相似文献   

8.
In this paper, the noncentral matrix quadratic forms of the skew elliptical variables are studied. A family of the matrix variate noncentral generalized Dirichlet distributions is introduced as the extension of the noncentral Wishart distributions, the Dirichlet distributions and the noncentral generalized Dirichlet distributions. Main distributional properties are investigated. These include probability density and closure property under linear transformation and marginalization, the joint distribution of the sub-matrices of the matrix quadratic forms in the skew elliptical variables and the moment generating functions and Bartlett's decomposition of the matrix quadratic forms in the skew normal variables. Two versions of the noncentral Cochran's Theorem for the matrix variate skew normal distributions are obtained, providing sufficient and necessary conditions for the quadratic forms in the skew normal variables to have the matrix variate noncentral generalized Dirichlet distributions. Applications include the properties of the least squares estimation in multivariate linear model and the robustness property of the Wilk's likelihood ratio statistic in the family of the matrix variate skew elliptical distributions.  相似文献   

9.
For a class of multivariate skew normal distributions, the noncentral skew chi-square distribution is studied. The necessary and sufficient conditions under which a sequence of quadratic forms is generalized noncentral skew chi-square distributed random variables are obtained. Several examples are given to illustrate the results.  相似文献   

10.
In this paper, we establish a connection between the Hadamard product and the usual matrix multiplication. In addition, we study some new properties of the Hadamard product and explore the inverse problem associated with the established connection, which facilitates diverse applications. Furthermore, we propose a matrix-variate generalized Birnbaum-Saunders (GBS) distribution. Three representations of the matrix-variate GBS density are provided, one of them by using the mentioned connection. The main motivation of this article is based on the fact that the representation of the matrix-variate GBS density based on element-by-element specification does not allow matrix transformations. Consequently, some statistical procedures based on this representation, such as multivariate data analysis and statistical shape theory, cannot be performed. For this reason, the primary goal of this work is to obtain a matrix representation of the matrix-variate GBS density that is useful for some statistical applications. When the GBS density is expressed by means of a matrix representation based on the Hadamard product, such a density is defined in terms of the original matrices, as is common for many matrix-variate distributions, allowing matrix transformations to be handled in a natural way and then suitable statistical procedures to be developed.  相似文献   

11.
A new class of multivariate skew-normal distributions, fundamental skew-normal distributions and their canonical version, is developed. It contains the product of independent univariate skew-normal distributions as a special case. Stochastic representations and other main properties of the associated distribution theory of linear and quadratic forms are considered. A unified procedure for extending this class to other families of skew distributions such as the fundamental skew-symmetric, fundamental skew-elliptical, and fundamental skew-spherical class of distributions is also discussed.  相似文献   

12.
We investigate the properties of a class of discrete multivariate distributions whose univariate marginals have ordered categories, all the bivariate marginals, like in the Plackett distribution, have log-odds ratios which do not depend on cut points and all higher-order interactions are constrained to 0. We show that this class of distributions may be interpreted as a discretized version of a multivariate continuous distribution having univariate logistic marginals. Convenient features of this class relative to the class of ordered probit models (the discretized version of the multivariate normal) are highlighted. Relevant properties of this distribution like quadratic log-linear expansion, invariance to collapsing of adjacent categories, properties related to positive dependence, marginalization and conditioning are discussed briefly. When continuous explanatory variables are available, regression models may be fitted to relate the univariate logits (as in a proportional odds model) and the log-odds ratios to covariates.  相似文献   

13.
We consider a continuous time stochastic volatility model. The model contains a stationary volatility process. We aim to estimate the multivariate density of the finite-dimensional distributions of this process. We assume that we observe the process at discrete equidistant instants of time. The distance between two consecutive sampling times is assumed to tend to zero.A multivariate Fourier-type deconvolution kernel density estimator based on the logarithm of the squared processes is proposed to estimate the multivariate volatility density. An expansion of the bias and a bound on the variance are derived.  相似文献   

14.
We consider estimation after a group sequential test about a multivariate normal mean, such as a χ2 test or a sequential version of the Bonferroni procedure. We derive the density function of the sufficient statistics and show that the sample mean remains to be the maximum likelihood estimator but is no longer unbiased. We propose an alternative Rao-Blackwell type unbiased estimator. We show that the family of distributions of the sufficient statistic is not complete, and there exist infinitely many unbiased estimators of the mean vector and none has uniformly minimum variance. However, when restricted to truncation-adaptable statistics, completeness holds and the Rao-Blackwell estimator has uniformly minimum variance.  相似文献   

15.
Bayes estimation of the mean of a variance mixture of multivariate normal distributions is considered under sum of squared errors loss. We find broad class of priors (also in the variance mixture of normal class) which result in proper and generalized Bayes minimax estimators. This paper extends the results of Strawderman [Minimax estimation of location parameters for certain spherically symmetric distribution, J. Multivariate Anal. 4 (1974) 255-264] in a manner similar to that of Maruyama [Admissible minimax estimators of a mean vector of scale mixtures of multivariate normal distribution, J. Multivariate Anal. 21 (2003) 69-78] but somewhat more in the spirit of Fourdrinier et al. [On the construction of bayes minimax estimators, Ann. Statist. 26 (1998) 660-671] for the normal case, in the sense that we construct classes of priors giving rise to minimaxity. A feature of this paper is that in certain cases we are able to construct proper Bayes minimax estimators satisfying the properties and bounds in Strawderman [Minimax estimation of location parameters for certain spherically symmetric distribution, J. Multivariate Anal. 4 (1974) 255-264]. We also give some insight into why Strawderman's results do or do not seem to apply in certain cases. In cases where it does not apply, we give minimax estimators based on Berger's [Minimax estimation of location vectors for a wide class of densities, Ann. Statist. 3 (1975) 1318-1328] results. A main condition for minimaxity is that the mixing distributions of the sampling distribution and the prior distribution satisfy a monotone likelihood ratio property with respect to a scale parameter.  相似文献   

16.
The paper is devoted to the problem of statistical estimation of a multivariate distribution density, which is a discrete mixture of Gaussian distributions. A heuristic approach is considered, based on the use of the EM algorithm and nonparametric density estimation with a sequential increase in the number of components of the mixture. Criteria for testing of model adequacy are discussed.  相似文献   

17.
Understanding and modeling dependence structures for multivariate extreme values are of interest in a number of application areas. One of the well-known approaches is to investigate the Pickands dependence function. In the bivariate setting, there exist several estimators for estimating the Pickands dependence function which assume known marginal distributions [J. Pickands, Multivariate extreme value distributions, Bull. Internat. Statist. Inst., 49 (1981) 859-878; P. Deheuvels, On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions, Statist. Probab. Lett. 12 (1991) 429-439; P. Hall, N. Tajvidi, Distribution and dependence-function estimation for bivariate extreme-value distributions, Bernoulli 6 (2000) 835-844; P. Capéraà, A.-L. Fougères, C. Genest, A nonparametric estimation procedure for bivariate extreme value copulas, Biometrika 84 (1997) 567-577]. In this paper, we generalize the bivariate results to p-variate multivariate extreme value distributions with p?2. We demonstrate that the proposed estimators are consistent and asymptotically normal as well as have excellent small sample behavior.  相似文献   

18.
We consider two problems: (1) estimate a normal mean under a general divergence loss introduced in [S. Amari, Differential geometry of curved exponential families — curvatures and information loss, Ann. Statist. 10 (1982) 357-387] and [N. Cressie, T.R.C. Read, Multinomial goodness-of-fit tests, J. Roy. Statist. Soc. Ser. B. 46 (1984) 440-464] and (2) find a predictive density of a new observation drawn independently of observations sampled from a normal distribution with the same mean but possibly with a different variance under the same loss. The general divergence loss includes as special cases both the Kullback-Leibler and Bhattacharyya-Hellinger losses. The sample mean, which is a Bayes estimator of the population mean under this loss and the improper uniform prior, is shown to be minimax in any arbitrary dimension. A counterpart of this result for predictive density is also proved in any arbitrary dimension. The admissibility of these rules holds in one dimension, and we conjecture that the result is true in two dimensions as well. However, the general Baranchick [A.J. Baranchick, a family of minimax estimators of the mean of a multivariate normal distribution, Ann. Math. Statist. 41 (1970) 642-645] class of estimators, which includes the James-Stein estimator and the Strawderman [W.E. Strawderman, Proper Bayes minimax estimators of the multivariate normal mean, Ann. Math. Statist. 42 (1971) 385-388] class of estimators, dominates the sample mean in three or higher dimensions for the estimation problem. An analogous class of predictive densities is defined and any member of this class is shown to dominate the predictive density corresponding to a uniform prior in three or higher dimensions. For the prediction problem, in the special case of Kullback-Leibler loss, our results complement to a certain extent some of the recent important work of Komaki [F. Komaki, A shrinkage predictive distribution for multivariate normal observations, Biometrika 88 (2001) 859-864] and George, Liang and Xu [E.I. George, F. Liang, X. Xu, Improved minimax predictive densities under Kullbak-Leibler loss, Ann. Statist. 34 (2006) 78-92]. While our proposed approach produces a general class of predictive densities (not necessarily Bayes, but not excluding Bayes predictors) dominating the predictive density under a uniform prior. We show also that various modifications of the James-Stein estimator continue to dominate the sample mean, and by the duality of estimation and predictive density results which we will show, similar results continue to hold for the prediction problem as well.  相似文献   

19.
The Moore-Penrose inverse of a singular or nonsquare matrix is not only existent but also unique. In this paper, we derive the Jacobian of the transformation from such a matrix to the transpose of its Moore-Penrose inverse. Using this Jacobian, we investigate the distribution of the Moore-Penrose inverse of a random matrix and propose the notion of pseudo-inverse multivariate/matrix-variate distributions. For arbitrary multivariate or matrix-variate distributions, we can develop the corresponding pseudo-inverse distributions. In particular, we present pseudo-inverse multivariate normal distributions, pseudo-inverse Dirichlet distributions, pseudo-inverse matrix-variate normal distributions and pseudo-inverse Wishart distributions.  相似文献   

20.
This paper considers a new approach to develop a very general class of skew multivariate distributions. The approach is based on a linear combination of an elliptically distributed random variable with a linear constraint. Using this approach two different classes of multivariate distributions are constructed based on original distribution. These new classes include different types of skew normal (type A and type B) and other skew elliptical distributions, exist in the literature. We also derive the moment generating function, marginal and conditional density of our proposed classes of distributions. Straightforward explanations are applied to demonstrate the relationships among previous approaches by others with our proposed class of skew distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号