首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1674篇
  免费   64篇
  国内免费   5篇
化学   1008篇
晶体学   39篇
力学   60篇
数学   136篇
物理学   500篇
  2023年   10篇
  2022年   8篇
  2021年   21篇
  2020年   25篇
  2019年   22篇
  2018年   20篇
  2017年   23篇
  2016年   59篇
  2015年   27篇
  2014年   49篇
  2013年   91篇
  2012年   93篇
  2011年   126篇
  2010年   67篇
  2009年   60篇
  2008年   102篇
  2007年   80篇
  2006年   88篇
  2005年   52篇
  2004年   50篇
  2003年   50篇
  2002年   39篇
  2001年   29篇
  2000年   28篇
  1999年   17篇
  1998年   12篇
  1997年   21篇
  1996年   15篇
  1995年   27篇
  1994年   32篇
  1993年   35篇
  1992年   36篇
  1991年   8篇
  1990年   12篇
  1989年   20篇
  1988年   13篇
  1987年   19篇
  1986年   9篇
  1985年   16篇
  1984年   23篇
  1983年   12篇
  1982年   20篇
  1981年   16篇
  1980年   23篇
  1979年   12篇
  1978年   12篇
  1977年   8篇
  1976年   11篇
  1974年   9篇
  1973年   9篇
排序方式: 共有1743条查询结果,搜索用时 93 毫秒
1.
Quantum correlations provide dramatic advantage over the corresponding classical resources in several communication tasks. However, a broad class of probabilistic theories exists that attributes greater success than quantum theory in many of these tasks by allowing supra-quantum correlations in “space-like” and/or “time-like” paradigms. In this letter, a communication task involving three spatially separated parties is proposed where one party (verifier) aims to verify whether the bit strings possessed by the other two parties (terminals) are equal or not. This task is called authentication with limited communication, the restrictions on communication being: i) the terminals cannot communicate with each other, but (ii) each of them can communicate with the verifier through single use of channels with limited capacity. Manifestly, classical resources are not sufficient for perfect success of this task. Moreover, it is also not possible to perform this task with certainty in several nonclassical theories although they might possess stronger “space-like” and/or “time-like” correlations. Surprisingly, quantum resources can achieve the perfect winning strategy. The proposed task thus stands apart from all previously known communication tasks as it exhibits quantum advantage over other nonclassical strategies.  相似文献   
2.
Molecular Diversity - The antifungals that are in current clinical practice have a high occurrence of a side effect and multidrug resistance (MDR). Researchers across the globe are trying to...  相似文献   
3.
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI/AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.  相似文献   
4.
To circumvent costly fluorescent labeling, five nonconventional, multifunctional, intrinsically fluorescent aliphatic terpolymers ( 1 – 5 ) have been synthesized by C−C/C−N-coupled, solution polymerization of two non-emissive monomers with protrusions of fluorophore monomers generated in situ. These scalable terpolymers were suitable for sensing and high-performance exclusion of CuII, logic function, and bioimaging. The structures of the terpolymers, in situ attachment of fluorescent monomers, aggregation-induced enhanced emission, bioimaging ability, and super adsorption were investigated by 1H and 13C NMR, EPR, FTIR, X-ray photoelectron, UV/Vis, and atomic absorption spectroscopy, thermogravimetric analysis, high-resolution transmission electron microscopy, dynamic light scattering, solid-state fluorescence, fluorescence imaging, and fluorescence lifetime measurements, as well as by isotherm, kinetics, and thermodynamic studies. The geometries and electronic structures of the fluorophores and the absorption and emission properties of the terpolymers were examined by DFT, time-dependent DFT, and natural transition orbital analyses. For 1 , 2 , and 5 , the limits of detection were determined to be 1.03×10−7, 1.65×10−7, and 1.77×10−7 m , respectively, and the maximum adsorption capacities are 1575.21, 1433.70, and 1472.21 mg g−1, respectively.  相似文献   
5.
G-quadruplexes (G4) are the most actively studied non-canonical secondary structures formed by contiguous repeats of guanines in DNA or RNA strands. Small molecule mediated targeting of G-quadruplexes has emerged as an attractive tool for visualization and stabilization of these structures inside the cell. Limited number of DNA and RNA G4-selective assays have been reported for primary ligand screening. A combination of fluorescence spectroscopy, AFM, CD, PAGE, and confocal microscopy have been used to assess a dimeric carbocyanine dye B6,5 for screening G4-binding ligands in vitro and in cellulo. The dye B6,5 interacts with physiologically relevant DNA and RNA G4 structures, resulting in fluorescence enhancement of the molecule as an in vitro readout for G4 selectivity. Interaction of the dye with G4 is accompanied by quadruplex stabilization that extends its use in primary screening of G4 specific ligands. The molecule is cell permeable and enables visualization of quadruplex dominated cellular regions of nucleoli using confocal microscopy. The dye is displaced by quarfloxin in live cells. The dye B6,5 shows remarkable duplex to quadruplex selectivity in vitro along with ligand-like stabilization of DNA G4 structures. Cell permeability and response to RNA G4 structures project the dye with interesting theranostic potential. Our results validate that B6,5 can serve the dual purpose of visualization of DNA and RNA G4 structures and screening of G4 specific ligands, and adds to the limited number of probes with such potential.  相似文献   
6.
Journal of Thermal Analysis and Calorimetry - Numerical simulation of a non-linear mathematical model governing an arbitrarily oblique slip flow of a nanofluid, with suspended carbon nanotubes in...  相似文献   
7.
8.
9.
“Grafting through” polymerization represents copolymerization of free monomers in solution and polymerizable units bound to a substrate. Free polymer chains are formed initially in solution and can incorporate the surface-bound monomers, and thereby, get covalently bonded to the surface during the polymerization process. As more growing chains attach to the surface-bound monomers, an immobilized polymer layer is formed on the surface. We use a combination of computer simulation and experiments to comprehend this process for monomers bound to a flat impenetrable substrate. We concentrate specifically on addressing the effect of spatial density of the surface-bound monomers on the formation of the surface-attached polymers. We employ a lattice-based Monte Carlo model utilizing the bond fluctuation model scheme to provide molecular-level insight into the grafting process. For experimental validation, we create gradients of density of bound methacrylate units on flat silicon wafers using organosilane chemistry and carry out “grafting through” free radical polymerization initiated in bulk. We report that the proximity of the surface-bound polymerizable units promotes the “grafting through” process but prevents more free growing chains to “graft through'' the polymerizable units. The “grafting through” process is self-limiting in nature and does not affect the overall density of the surface-bound polymer layer, except in case of the highest theoretical packing density of surface-bound monomers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 263–274  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号