首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a nonmonotone adaptive trust region method based on simple conic model for unconstrained optimization. Unlike traditional trust region methods, the subproblem in our method is a simple conic model, where the Hessian of the objective function is approximated by a scalar matrix. The trust region radius is adjusted with a new self-adaptive adjustment strategy which makes use of the information of the previous iteration and current iteration. The new method needs less memory and computational efforts. The global convergence and Q-superlinear convergence of the algorithm are established under the mild conditions. Numerical results on a series of standard test problems are reported to show that the new method is effective and attractive for large scale unconstrained optimization problems.  相似文献   

2.
In this paper, a new nonmonotone inexact line search rule is proposed and applied to the trust region method for unconstrained optimization problems. In our line search rule, the current nonmonotone term is a convex combination of the previous nonmonotone term and the current objective function value, instead of the current objective function value . We can obtain a larger stepsize in each line search procedure and possess nonmonotonicity when incorporating the nonmonotone term into the trust region method. Unlike the traditional trust region method, the algorithm avoids resolving the subproblem if a trial step is not accepted. Under suitable conditions, global convergence is established. Numerical results show that the new method is effective for solving unconstrained optimization problems.  相似文献   

3.
一类拟牛顿非单调信赖域算法及其收敛性   总被引:2,自引:0,他引:2  
刘培培  陈兰平 《数学进展》2008,37(1):92-100
本文提出了一类求解无约束最优化问题的非单调信赖域算法.将非单调Wolfe线搜索技术与信赖域算法相结合,使得新算-法不仅不需重解子问题,而且在每步迭代都满足拟牛顿方程同时保证目标函数的近似Hasse阵Bk的正定性.在适当的条件下,证明了此算法的全局收敛性.数值结果表明该算法的有效性.  相似文献   

4.
Based on simple quadratic models of the trust region subproblem, we combine the trust region method with the nonmonotone and adaptive techniques to propose a new nonmonotone adaptive trust region algorithm for unconstrained optimization. Unlike traditional trust region method, our trust region subproblem is very simple by using a new scale approximation of the minimizing function??s Hessian. The new method needs less memory capacitance and computational complexity. The convergence results of the method are proved under certain conditions. Numerical results show that the new method is effective and attractive for large scale unconstrained problems.  相似文献   

5.
一类带非单调线搜索的信赖域算法   总被引:1,自引:0,他引:1  
通过将非单调Wolfe线搜索技术与传统的信赖域算法相结合,我们提出了一类新的求解无约束最优化问题的信赖域算法.新算法在每一迭代步只需求解一次信赖域子问题,而且在每一迭代步Hesse阵的近似都满足拟牛顿条件并保持正定传递.在一定条件下,证明了算法的全局收敛性和强收敛性.数值试验表明新算法继承了非单调技术的优点,对于求解某...  相似文献   

6.
In this paper, we consider a trust region algorithm for unconstrained optimization problems. Unlike the traditional memoryless trust region methods, our trust region model includes memory of the past iteration, which makes the algorithm less myopic in the sense that its behavior is not completely dominated by the local nature of the objective function, but rather by a more global view. The global convergence is established by using a nonmonotone technique. The numerical tests are also given to show the efficiency of our proposed method.  相似文献   

7.
In this paper, we present a new line search and trust region algorithm for unconstrained optimization problem with the trust region radius converging to zero. The new trust region algorithm performs a backtracking line search from the failed, point instead of resolving the subproblem when the trial step results in an increase in the objective function. We show that the algorithm preserves the convergence properties of the traditional trust region algorithms. Numerical results are also given.  相似文献   

8.
本文提出了一种解无约束优化问题的新的非单调自适应信赖域方法.这种方法借助于目标函数的海赛矩阵的近似数量矩阵来确定信赖域半径.在通常的条件下,给出了新算法的全局收敛性以及局部超线性收敛的结果,数值试验验证了新的非单调方法的有效性.  相似文献   

9.
In this paper,we propose an improved trust region method for solving unconstrained optimization problems.Different with traditional trust region methods,our algorithm does not resolve the subproblem within the trust region centered at the current iteration point,but within an improved one centered at some point located in the direction of the negative gradient,while the current iteration point is on the boundary set.We prove the global convergence properties of the new improved trust region algorithm and give the computational results which demonstrate the effectiveness of our algorithm.  相似文献   

10.
In this paper, we propose a trust region method for unconstrained optimization that can be regarded as a combination of conic model, nonmonotone and line search techniques. Unlike in traditional trust region methods, the subproblem of our algorithm is the conic minimization subproblem; moreover, our algorithm performs a nonmonotone line search to find the next iteration point when a trial step is not accepted, instead of resolving the subproblem. The global and superlinear convergence results for the algorithm are established under reasonable assumptions. Numerical results show that the new method is efficient for unconstrained optimization problems.  相似文献   

11.
《Optimization》2012,61(6):733-763
We present a non-monotone trust region algorithm for unconstrained optimization. Using the filter technique of Fletcher and Leyffer, we introduce a new filter acceptance criterion and use it to define reference iterations dynamically. In contrast with the early filter criteria, the new criterion ensures that the size of the filter is finite. We also show a correlation between problem dimension and the filter size. We prove the global convergence of the proposed algorithm to first- and second-order critical points under suitable assumptions. It is significant that the global convergence analysis does not require the common assumption of monotonicity of the sequence of objective function values in reference iterations, as assumed by the standard non-monotone trust region algorithms. Numerical experiments on the CUTEr problems indicate that the new algorithm is competitive compared to some representative non-monotone trust region algorithms.  相似文献   

12.
In this paper, an adaptive trust region algorithm that uses Moreau–Yosida regularization is proposed for solving nonsmooth unconstrained optimization problems. The proposed algorithm combines a modified secant equation with the BFGS update formula and an adaptive trust region radius, and the new trust region radius utilizes not only the function information but also the gradient information. The global convergence and the local superlinear convergence of the proposed algorithm are proven under suitable conditions. Finally, the preliminary results from comparing the proposed algorithm with some existing algorithms using numerical experiments reveal that the proposed algorithm is quite promising for solving nonsmooth unconstrained optimization problems.  相似文献   

13.
刘亚君  刘新为 《计算数学》2016,38(1):96-112
梯度法是求解无约束最优化的一类重要方法.步长选取的好坏与梯度法的数值表现息息相关.注意到BB步长隐含了目标函数的二阶信息,本文将BB法与信赖域方法相结合,利用BB步长的倒数去近似目标函数的Hesse矩阵,同时利用信赖域子问题更加灵活地选取梯度法的步长,给出求解无约束最优化问题的单调和非单调信赖域BB法.在适当的假设条件下,证明了算法的全局收敛性.数值试验表明,与已有的求解无约束优化问题的BB类型的方法相比,非单调信赖域BB法中e_k=‖x_k-x~*‖的下降呈现更明显的阶梯状和单调性,因此收敛速度更快.  相似文献   

14.
In this paper, based on a simple model of trust region sub-problem, we combine the trust region method with the non-monotone and self-adaptive techniques to propose a new non-monotone self-adaptive trust region algorithm for unconstrained optimization. By use of the simple model, the new method needs less memory capacitance, computational complexity and CPU time. The convergence results of the method are proved under certain conditions. Numerical results show that the new method is effective and attractive for large-scale optimization problems.  相似文献   

15.
一种改进的无约束非光滑优化问题的信赖域算法   总被引:3,自引:0,他引:3  
本文提出了一种新的求解无约束非光滑优化问题的信赖域算法,并证明了该算法的迭代点列的任何聚点都是的问题的稳定点。  相似文献   

16.
Nonmonotonic trust region algorithm   总被引:24,自引:0,他引:24  
A nonmonotonic trust region method for unconstrained optimization problems is presented. Although the method allows the sequence of values of the objective function to be nonmonotonic, convergence properties similar to those for the usual trust region method are proved under certain conditions, including conditions on the approximate solutions to the subproblem. To make the solution satisfy these conditions, an algorithm to solve the subproblem is also established. Finally, some numerical results are reported which show that the nonmonotonic trust region method is superior to the usual trust region method according to both the number of gradient evaluations and the number of function evaluations.The authors would like to thank Professor L. C. W. Dixon for his useful suggestions.  相似文献   

17.
The trust region problem, minimization of a quadratic function subject to a spherical trust region constraint, occurs in many optimization algorithms. In a previous paper, the authors introduced an inexpensive approximate solution technique for this problem that involves the solution of a two-dimensional trust region problem. They showed that using this approximation in an unconstrained optimization algorithm leads to the same theoretical global and local convergence properties as are obtained using the exact solution to the trust region problem. This paper reports computational results showing that the two-dimensional minimization approach gives nearly optimal reductions in then-dimension quadratic model over a wide range of test cases. We also show that there is very little difference, in efficiency and reliability, between using the approximate or exact trust region step in solving standard test problems for unconstrained optimization. These results may encourage the application of similar approximate trust region techniques in other contexts.Research supported by ARO contract DAAG 29-84-K-0140, NSF grant DCR-8403483, and NSF cooperative agreement DCR-8420944.  相似文献   

18.
In this paper, we propose a parallel decomposition algorithm for solving a class of convex optimization problems, which is broad enough to contain ordinary convex programming problems with a strongly convex objective function. The algorithm is a variant of the trust region method applied to the Fenchel dual of the given problem. We prove global convergence of the algorithm and report some computational experience with the proposed algorithm on the Connection Machine Model CM-5.  相似文献   

19.
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is convex (or even uniformly convex). We propose to solve unconstrained nonconvex optimization problems by a self-scaling BFGS algorithm with nonmonotone linear search. Nonmonotone line search has been recognized in numerical practices as a competitive approach for solving large-scale nonlinear problems. We consider two different nonmonotone line search forms and study the global convergence of these nonmonotone self-scale BFGS algorithms. We prove that, under some weaker condition than that in the literature, both forms of the self-scaling BFGS algorithm are globally convergent for unconstrained nonconvex optimization problems.  相似文献   

20.
In this paper we propose an algorithm using only the values of the objective function and constraints for solving one-dimensional global optimization problems where both the objective function and constraints are Lipschitzean and nonlinear. The constrained problem is reduced to an unconstrained one by the index scheme. To solve the reduced problem a new method with local tuning on the behavior of the objective function and constraints over different sectors of the search region is proposed. Sufficient conditions of global convergence are established. We also present results of some numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号