首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
This paper considers the nonparametric M-estimator in a nonlinear cointegration type model. The local time density argument, which was developed by Phillips and Park (1998) [6] and Wang and Phillips (2009) [9], is applied to establish the asymptotic theory for the nonparametric M-estimator. The weak consistency and the asymptotic distribution of the proposed estimator are established under mild conditions. Meanwhile, the asymptotic distribution of the local least squares estimator and the local least absolute distance estimator can be obtained as applications of our main results. Furthermore, an iterated procedure for obtaining the nonparametric M-estimator and a cross-validation bandwidth selection method are discussed, and some numerical examples are provided to show that the proposed methods perform well in the finite sample case.  相似文献   

2.
We explore a nonparametric version of response surface analysis. Estimates for the location where maximum response occurs are proposed and their asymptotic distribution is investigated. The proposed estimates are based on kernel and local least squares methods. We construct asymptotic confidence regions for the location and include comparisons with the quadratic response surface approach. The methods are illustrated for the two-dimensional case with AIDS incidence data, where the point of maximum incidence is of interest.  相似文献   

3.
4.
We consider a panel data semiparametric partially linear regression model with an unknown parameter vector for the linear parametric component, an unknown nonparametric function for the nonlinear component, and a one-way error component structure which allows unequal error variances (referred to as heteroscedasticity). We develop procedures to detect heteroscedasticity and one-way error component structure, and propose a weighted semiparametric least squares estimator (WSLSE) of the parametric component in the presence of heteroscedasticity and/or one-way error component structure. This WSLSE is asymptotically more efficient than the usual semiparametric least squares estimator considered in the literature. The asymptotic properties of the WSLSE are derived. The nonparametric component of the model is estimated by the local polynomial method. Some simulations are conducted to demonstrate the finite sample performances of the proposed testing and estimation procedures. An example of application on a set of panel data of medical expenditures in Australia is also illustrated.  相似文献   

5.
In the context of semi-functional partial linear regression model, we study the problem of error density estimation. The unknown error density is approximated by a mixture of Gaussian densities with means being the individual residuals, and variance a constant parameter. This mixture error density has a form of a kernel density estimator of residuals, where the regression function, consisting of parametric and nonparametric components, is estimated by the ordinary least squares and functional Nadaraya–Watson estimators. The estimation accuracy of the ordinary least squares and functional Nadaraya–Watson estimators jointly depends on the same bandwidth parameter. A Bayesian approach is proposed to simultaneously estimate the bandwidths in the kernel-form error density and in the regression function. Under the kernel-form error density, we derive a kernel likelihood and posterior for the bandwidth parameters. For estimating the regression function and error density, a series of simulation studies show that the Bayesian approach yields better accuracy than the benchmark functional cross validation. Illustrated by a spectroscopy data set, we found that the Bayesian approach gives better point forecast accuracy of the regression function than the functional cross validation, and it is capable of producing prediction intervals nonparametrically.  相似文献   

6.
Minimum average variance estimation (MAVE, Xia et al. (2002) [29]) is an effective dimension reduction method. It requires no strong probabilistic assumptions on the predictors, and can consistently estimate the central mean subspace. It is applicable to a wide range of models, including time series. However, the least squares criterion used in MAVE will lose its efficiency when the error is not normally distributed. In this article, we propose an adaptive MAVE which can be adaptive to different error distributions. We show that the proposed estimate has the same convergence rate as the original MAVE. An EM algorithm is proposed to implement the new adaptive MAVE. Using both simulation studies and a real data analysis, we demonstrate the superior finite sample performance of the proposed approach over the existing least squares based MAVE when the error distribution is non-normal and the comparable performance when the error is normal.  相似文献   

7.
The paper is devoted to the problem of statistical estimation of a multivariate distribution density, which is a discrete mixture of Gaussian distributions. A heuristic approach is considered, based on the use of the EM algorithm and nonparametric density estimation with a sequential increase in the number of components of the mixture. Criteria for testing of model adequacy are discussed.  相似文献   

8.
The semilinear in-slide models (SLIMs) have been shown to be effective methods for normalizing microarray data [J. Fan, P. Tam, G. Vande Woude, Y. Ren, Normalization and analysis of cDNA micro-arrays using within-array replications applied to neuroblastoma cell response to a cytokine, Proceedings of the National Academy of Science (2004) 1135-1140]. Using a backfitting method, [J. Fan, H. Peng, T. Huang, Semilinear high-dimensional model for normalization of microarray data: a theoretical analysis and partial consistency, Journal of American Statistical Association, 471, (2005) 781-798] proposed a profile least squares (PLS) estimation for the parametric and nonparametric components. The general asymptotic properties for their estimator is not developed. In this paper, we consider a new approach, two-stage estimation, which enables us to establish the asymptotic normalities for both of the parametric and nonparametric component estimators. We further propose a plug-in bandwidth selector using the asymptotic normality of the nonparametric component estimator. The proposed method allow for the modeling of the aggregated SLIMs case where we can explicitly show that taking the aggregated information into account can improve both of the parametric and nonparametric component estimator by the proposed two-stage approach. Some simulation studies are conducted to illustrate the finite sample performance of the proposed procedures.  相似文献   

9.
The paper presents a unified approach to local likelihood estimation for a broad class of nonparametric models, including e.g. the regression, density, Poisson and binary response model. The method extends the adaptive weights smoothing (AWS) procedure introduced in Polzehl and Spokoiny (2000) in context of image denoising. The main idea of the method is to describe a greatest possible local neighborhood of every design point Xi in which the local parametric assumption is justified by the data. The method is especially powerful for model functions having large homogeneous regions and sharp discontinuities. The performance of the proposed procedure is illustrated by numerical examples for density estimation and classification. We also establish some remarkable theoretical nonasymptotic results on properties of the new algorithm. This includes the ``propagation' property which particularly yields the root-n consistency of the resulting estimate in the homogeneous case. We also state an ``oracle' result which implies rate optimality of the estimate under usual smoothness conditions and a ``separation' result which explains the sensitivity of the method to structural changes.  相似文献   

10.
We consider a problem of nonparametric density estimation under shape restrictions. We deal with the case where the density belongs to a class of Lipschitz functions. Devroye [L. Devroye, A Course in Density Estimation, in: Progress in Probability and Statistics, vol. 14, Birkhäuser Boston Inc., Boston, MA, 1987] considered these classes of estimates as tailor-made estimates, in contrast in some way to universally consistent estimates. In our framework we get the existence and uniqueness of the maximum likelihood estimate as well as strong consistency. This NPMLE can be easily characterized but it is not easy to compute. Some simpler approximations are also considered.  相似文献   

11.
This paper is concerned with the estimating problem of the partially linear regression models where the linear covariates are measured with additive errors. A difference based estimation is proposed to estimate the parametric component. We show that the resulting estimator is asymptotically unbiased and achieves the semiparametric efficiency bound if the order of the difference tends to infinity. The asymptotic normality of the resulting estimator is established as well. Compared with the corrected profile least squares estimation, the proposed procedure avoids the bandwidth selection. In addition, the difference based estimation of the error variance is also considered. For the nonparametric component, the local polynomial technique is implemented. The finite sample properties of the developed methodology is investigated through simulation studies. An example of application is also illustrated.  相似文献   

12.
We present a new approach to univariate partial least squares regression (PLSR) based on directional signal-to-noise ratios (SNRs). We show how PLSR, unlike principal components regression, takes into account the actual value and not only the variance of the ordinary least squares (OLS) estimator. We find an orthogonal sequence of directions associated with decreasing SNR. Then, we state partial least squares estimators as least squares estimators constrained to be null on the last directions. We also give another procedure that shows how PLSR rebuilds the OLS estimator iteratively by seeking at each step the direction with the largest difference of signals over the noise. The latter approach does not involve any arbitrary scale or orthogonality constraints.  相似文献   

13.
Gaussian model selection   总被引:1,自引:0,他引:1  
Our purpose in this paper is to provide a general approach to model selection via penalization for Gaussian regression and to develop our point of view about this subject. The advantage and importance of model selection come from the fact that it provides a suitable approach to many different types of problems, starting from model selection per se (among a family of parametric models, which one is more suitable for the data at hand), which includes for instance variable selection in regression models, to nonparametric estimation, for which it provides a very powerful tool that allows adaptation under quite general circumstances. Our approach to model selection also provides a natural connection between the parametric and nonparametric points of view and copes naturally with the fact that a model is not necessarily true. The method is based on the penalization of a least squares criterion which can be viewed as a generalization of Mallows’C p . A large part of our efforts will be put on choosing properly the list of models and the penalty function for various estimation problems like classical variable selection or adaptive estimation for various types of l p -bodies. Received February 1, 1999 / final version received January 10, 2001?Published online April 3, 2001  相似文献   

14.
Functional semiparametric partially linear model with autoregressive errors   总被引:1,自引:0,他引:1  
In this paper, we introduce a functional semiparametric model, where a real-valued random variable is explained by the sum of a unknown linear combination of the components of a multivariate random variable and an unknown transformation of a functional random variable. The errors can be autocorrelated. We focus here on the parametric estimation of the coefficients in the linear combination. First, we use a nonparametric kernel method to remove the effect of the functional explanatory variable. Then, we use generalized least squares approach to obtain an estimator of these coefficients. Under some technical assumptions, we prove consistency and asymptotic normality of our estimator. Finally, we present Monte Carlo simulations that illustrate these characteristics.  相似文献   

15.
The first-order nonlinear autoregressive model is considered and a semiparametric method is proposed to estimate regression function. In the presented model, dependent errors are defined as first-order autoregressive AR(1). The conditional least squares method is used for parametric estimation and the nonparametric kernel approach is applied to estimate regression adjustment. In this case, some asymptotic behaviors and simulated results for the semiparametric method are presented. Furthermore, the method is applied for the financial data in Iran’s Tejarat-Bank.  相似文献   

16.
Recent sufficient dimension reduction methodologies in multivariate regression do not have direct application to a categorical predictor. For this, we define the multivariate central partial mean subspace and propose two methodologies to estimate it. The first method uses the ordinary least squares. Chi-squared distributed statistics for dimension tests are constructed, and an estimate of the target subspace is consistent and efficient. Moreover, the effects of continuous predictors can be tested without assuming any model. The second method extends Iterative Hessian Transformation to this context. For dimension estimation, permutation tests are used. Simulated and real data examples for illustrating various properties of the proposed methods are presented.  相似文献   

17.
We developed two kernel smoothing based tests of a parametric mean-regression model against a nonparametric alternative when the response variable is right-censored. The new test statistics are inspired by the synthetic data and the weighted least squares approaches for estimating the parameters of a (non)linear regression model under censoring. The asymptotic critical values of our tests are given by the quantiles of the standard normal law. The tests are consistent against fixed alternatives, local Pitman alternatives and uniformly over alternatives in Hölder classes of functions of known regularity.  相似文献   

18.
部分线性模型也就是响应变量关于一个或者多个协变量是线性的, 但对于其他的协变量是非线性的关系\bd 对于部分线性模型中的参数和非参数部分的估计方法, 惩罚最小二乘估计是重要的估计方法之一\bd 对于这种估计方法, 广义交叉验证法提供了一种确定光滑参数的方法\bd 但是, 在部分线性模型中, 用广义交叉验证法确定光滑参数的最优性还没有被证明\bd 本文证明了利用惩罚最小二乘估计对于部分线性模型估计时, 用广义交叉验证法选择光滑参数的最优性\bd 通过模拟验证了本文中所提出的用广义交叉验证法选择光滑参数具有很好的效果, 同时, 本文在模拟部分比较了广义交叉验证和最小二乘交叉验证的优劣.  相似文献   

19.
“Kriging” is the name of a parametric regression method used by hydrologists and mining engineers, among others. Features of the kriging approach are that it also provides an error estimate and that it can conveniently be employed also to estimate the integral of the regression function. In the present work, the kriging method is described and some of its statistical characteristics are explored. Also, some extensions of the nonparametric regression approach are made so that it too displays the kriging features. In particular, a “data driven” estimator of the expected square error is derived. Theoretical and computational comparisons of the kriging and nonparametric regressors are offered.  相似文献   

20.
We establish the consistency, asymptotic normality, and efficiency for estimators derived by minimizing the median of a loss function in a Bayesian context. We contrast this procedure with the behavior of two Frequentist procedures, the least median of squares (LMS) and the least trimmed squares (LTS) estimators, in regression problems. The LMS estimator is the Frequentist version of our estimator, and the LTS estimator approaches a median-based estimator as the trimming approaches 50% on each side. We argue that the Bayesian median-based method is a good tradeoff between the two Frequentist estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号