首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
It is shown that a system of n second order ordinary differential equations that possess 2(n?1) symmetries of certain type necessarily has maximal symmetry $\frak{sl}(n+2,\mathbb{R})$ . Further, it is shown for non-linearizable systems containing a subalgebra of symmetries isomorphic to $\frak{sl}(n-1,\mathbb{R})$ the dimension of the symmetry algebra $\mathcal{L}$ is dn 2?1. Examples showing that the upper bound is sharp are given.  相似文献   

2.
Suppose $\mathfrak {X} = \{X_1, X_2, \ldots,\,X_m\}$ is a system of real smooth vector fields on an open neighbourhood Ω of the closure of a bounded connected open set M in $\mathbb {R}^N$ satisfying the finite rank condition of Hörmander, namely the rank of the Lie algebra generated by $\mathfrak {X}$ under the usual bracket operation is a constant equal to N. We study the smoothness of solutions of a class of quasilinear equations of the form $$Q_{\mathfrak {X}}u = \sum _{j=1}^m X_j^*a_j(x, u, Xu) +b (x, u, Xu) = 0$$ where $a_j,\,b \in C^{\infty}(\Omega \times \mathbb {R} \times \mathbb {R}^m; \mathbb {R})$ . It is shown that if the matrix $\left({\frac {\partial a_j}{\partial \xi_i}}\right)$ is positive definite on $M \times \mathbb {R}^{m+1}$ then any weak solution $u \in \mathcal {C}^{2,\alpha}(M, \mathfrak {X})$ belongs to C (M).  相似文献   

3.
We show that sums of the $\mathit{SL}(3,\mathbb{Z})$ long element Kloosterman sum against a smooth weight function have cancelation due to the variation in argument of the Kloosterman sums, when each modulus is at least the square root of the other. Our main tool is Li’s generalization of the Kuznetsov formula on $\mathit{SL}(3,\mathbb{R})$ , which has to date been prohibitively difficult to apply. We first obtain analytic expressions for the weight functions on the Kloosterman sum side by converting them to Mellin–Barnes integral form. This allows us to relax the conditions on the test function and to produce a partial inversion formula suitable for studying sums of the long-element $\mathit{SL}(3,\mathbb{Z})$ Kloosterman sums.  相似文献   

4.
One considers Gelfand’s hypergeometric functions on the space of p×q matrices and their generalizations to the case of multi-dimensional matrices of arbitrary order k 1×???×k p. It is shown that these functions form bases of some $\frak g$ -modules, where $\frak g=\frak{gl}(p,\mathbb{C})\times\frak{gl}(q,\mathbb{C})$ or $\frak g=\frak{gl}(k_{1},\mathbb{C})\times\cdots\times\frak{gl}(k_{p},\mathbb{C})$ , respectively.  相似文献   

5.
Let $G$ denote a closed, connected, self-adjoint, noncompact subgroup of $GL(n,\mathbb R )$ , and let $d_{R}$ and $d_{L}$ denote respectively the right and left invariant Riemannian metrics defined by the canonical inner product on $M(n,\mathbb R ) = T_{I} GL(n,\mathbb R )$ . Let $v$ be a nonzero vector of $\mathbb R ^{n}$ such that the orbit $G(v)$ is unbounded in $\mathbb R ^{n}$ . Then the function $g \rightarrow d_{R}(g, G_{v})$ is unbounded, where $G_{v} = \{g \in G : g(v) = v \}$ , and we obtain algebraically defined upper and lower bounds $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ for the asymptotic behavior of the function $\frac{log|g(v)|}{d_{R}(g, G_{v})}$ as $d_{R}(g, G_{v}) \rightarrow \infty $ . The upper bound $\lambda ^{+}(v)$ is at most 1. The orbit $G(v)$ is closed in $\mathbb R ^{n} \Leftrightarrow \lambda ^{-}(w)$ is positive for some w $\in G(v)$ . If $G_{v}$ is compact, then $g \rightarrow |d_{R}(g,I) - d_{L}(g,I)|$ is uniformly bounded in $G$ , and the exponents $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ are sharp upper and lower asymptotic bounds for the functions $\frac{log|g(v)|}{d_{R}(g,I)}$ and $\frac{log|g(v)|}{d_{L}(g,I)}$ as $d_{R}(g,I) \rightarrow \infty $ or as $d_{L}(g,I) \rightarrow \infty $ . However, we show by example that if $G_{v}$ is noncompact, then there need not exist asymptotic upper and lower bounds for the function $\frac{log|g(v)|}{d_{L}(g, G_{v})}$ as $d_{L}(g, G_{v}) \rightarrow \infty $ . The results apply to representations of noncompact semisimple Lie groups $G$ on finite dimensional real vector spaces. We compute $\lambda ^{+}$ and $\lambda ^{-}$ for the irreducible, real representations of $SL(2,\mathbb R )$ , and we show that if the dimension of the $SL(2,\mathbb R )$ -module $V$ is odd, then $\lambda ^{+} = \lambda ^{-}$ on a nonempty open subset of $V$ . We show that the function $\lambda ^{-}$ is $K$ -invariant, where $K = O(n,\mathbb R ) \cap G$ . We do not know if $\lambda ^{-}$ is $G$ -invariant.  相似文献   

6.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

7.
Fix \(b\in \mathbb R _+\) and \(p\in (1,\infty )\) . Let \(\phi \) be a positive measurable function on \(I_b:=(0,b)\) . Define the Lorentz Gamma norm, \(\rho _{p,\phi }\) , at the measurable function \(f:\mathbb R _+\rightarrow \mathbb R _+\) by \(\rho _{{}_{p,\phi }}(f):=\left[ \int _0^bf^{**}(t)^p\phi (t)\,dt\right] ^{\frac{1}{p}}\) , in which \(f^{**}(t):=t^{-1}\int _0^tf^{*}(s)\,ds\) , where \(f^*(t):=\mu _f^{-1}(t)\) , with \(\mu _f(s):=|\{ x\in I_b: |f(x)|>s\}|\) . Our aim in this paper is to study the rearrangement-invariant space determined by \(\rho _{{}_{p,\phi }}\) . In particular, we determine its Köthe dual and its Boyd indices. Using the latter a sufficient condition is given for a Caldéron–Zygmund operator to map such a space into itself.  相似文献   

8.
We consider regular oblique derivative problem in cylinder Q T ?=????× (0, T), ${\Omega\subset {\mathbb R}^n}$ for uniformly parabolic operator ${{{\mathfrak P}}=D_t- \sum_{i,j=1}^n a^{ij}(x)D_{ij}}$ with VMO principal coefficients. Its unique strong solvability is proved in Manuscr. Math. 203?C220 (2000), when ${{{\mathfrak P}}u\in L^p(Q_T)}$ , ${p\in(1,\infty)}$ . Our aim is to show that the solution belongs to the generalized Sobolev?CMorrey space ${W^{2,1}_{p,\omega}(Q_T)}$ , when ${{{\mathfrak P}}u\in L^{p,\omega} (Q_T)}$ , ${p\in (1, \infty)}$ , ${\omega(x,r):\,{\mathbb R}^{n+1}_+\to {\mathbb R}_+}$ . For this goal an a priori estimate is obtained relying on explicit representation formula for the solution. Analogous result holds also for the Cauchy?CDirichlet problem.  相似文献   

9.
Wilking has recently shown that one can associate a Ricci flow invariant cone of curvature operators $C(S)$ , which are nonnegative in a suitable sense, to every $Ad_{SO(n,\mathbb{C })}$ invariant subset $S \subset \mathbf{so}(n,\mathbb{C })$ . In this article we show that if $S$ is an $Ad_{SO(n,\mathbb{C })}$ invariant subset of $\mathbf{so}(n,\mathbb{C })$ such that $S\cup \{0\}$ is closed and $C_+(S)\subset C(S)$ denotes the cone of curvature operators which are positive in the appropriate sense then one of the two possibilities holds: (a) The connected sum of any two Riemannian manifolds with curvature operators in $C_+(S)$ also admits a metric with curvature operator in $C_+(S)$ (b) The normalized Ricci flow on any compact Riemannian manifold $M$ with curvature operator in $C_+(S)$ converges to a metric of constant positive sectional curvature. We also point out that if $S$ is an arbitrary $Ad_{SO(n,\mathbb{C })}$ subset, then $C(S)$ is contained in the cone of curvature operators with nonnegative isotropic curvature.  相似文献   

10.
Let $\mathfrak{g }$ be a complex, semisimple Lie algebra. Drinfeld showed that the quantum loop algebra $U_\hbar (L\mathfrak g )$ of $\mathfrak{g }$ degenerates to the Yangian ${Y_\hbar (\mathfrak g )}$ . We strengthen this result by constructing an explicit algebra homomorphism $\Phi $ from $U_\hbar (L\mathfrak g )$ to the completion of ${Y_\hbar (\mathfrak g )}$ with respect to its grading. We show moreover that $\Phi $ becomes an isomorphism when ${U_\hbar (L\mathfrak g )}$ is completed with respect to its evaluation ideal. We construct a similar homomorphism for $\mathfrak{g }=\mathfrak{gl }_n$ and show that it intertwines the actions of $U_\hbar (L\mathfrak gl _{n})$ and $Y_\hbar (\mathfrak gl _{n})$ on the equivariant $K$ -theory and cohomology of the variety of $n$ -step flags in ${\mathbb{C }}^d$ constructed by Ginzburg–Vasserot.  相似文献   

11.
The paper is concerned with the derivation of error bounds for Gauss-type quadratures with Bernstein?Szeg? weights, $${\int\limits_{-1}^{1}}f(t)w(t)\, dt=G_{n}[f]+R_{n}(f),\quad G_{n}[f]=\sum\limits_{\nu=1}^{n}\lambda_{\nu} f(\tau_{\nu}) \quad(n\in\textbf{N}),$$ where f is an analytic function inside an elliptical contour \(\mathcal{E}_{\rho}\) with foci at \(\mp 1\) and sum of semi-axes \(\rho > 1\) , and w is a nonnegative and integrable weight function of Bernstein?Szeg? type. The derivation of effective bounds on \(|R_{n}(f)|\) is possible if good estimates of \(\max_{z\in\mathcal{E}_{\rho}}|K_{n}(z)|\) are available, especially if one knows the location of the extremal point \(\eta\in\mathcal{E}_{\rho}\) at which \(|K_{n}|\) attains its maximum. In such a case, instead of looking for upper bounds on \(\max_{z\in\mathcal{E}_{\rho}}|K_{n}(z)|\) , one can simply try to calculate \(|K_{n}(\eta,w)|\) . In the case under consideration, i.e. when $$w(t)= \frac{(1-t^{2})^{-1/2}}{\beta(\beta-2\alpha)\,t^{2} +2\delta(\beta-\alpha)\,t+\alpha^{2}+\delta^{2}},\quad t\in(-1,1),$$ for some \(\alpha,\beta,\delta\) , which satisfy \(0<\alpha<\beta,\ \beta\ne 2\alpha,\vert\delta\vert<\beta-\alpha\) , the location on the elliptical contours where the modulus of the kernel attains its maximum value is investigated. This leads to effective bounds on \(|R_{n}(f)|\) . The quality of the derived bounds is analyzed by a comparison with other error bounds proposed in the literature for the same class of integrands.  相似文献   

12.
In this paper we use Kuperberg’s $\mathfrak {sl}_3$ -webs and Khovanov’s $\mathfrak {sl}_3$ -foams to define a new algebra $K^S$ , which we call the $\mathfrak {sl}_3$ -web algebra. It is the $\mathfrak {sl}_3$ analogue of Khovanov’s arc algebra. We prove that $K^S$ is a graded symmetric Frobenius algebra. Furthermore, we categorify an instance of $q$ -skew Howe duality, which allows us to prove that $K^S$ is Morita equivalent to a certain cyclotomic KLR-algebra of level 3. This allows us to determine the split Grothendieck group $K^{\oplus }_0(\mathcal {W}^S)_{\mathbb {Q}(q)}$ , to show that its center is isomorphic to the cohomology ring of a certain Spaltenstein variety, and to prove that $K^S$ is a graded cellular algebra.  相似文献   

13.
In this paper we develop an abstract setup for hamiltonian group actions as follows: Starting with a continuous 2-cochain ω on a Lie algebra ${\mathfrak h}$ with values in an ${\mathfrak h}$ -module V, we associate subalgebras ${\mathfrak {sp}(\mathfrak h,\omega) \supseteq \mathfrak {ham}(\mathfrak h,\omega)}$ of symplectic, resp., hamiltonian elements. Then ${\mathfrak {ham}(\mathfrak h,\omega)}$ has a natural central extension which in turn is contained in a larger abelian extension of ${\mathfrak {sp}(\mathfrak h,\omega)}$ . In this setting, we study linear actions of a Lie group G on V which are compatible with a homomorphism ${\mathfrak g \to \mathfrak {ham}(\mathfrak h,\omega)}$ , i.e., abstract hamiltonian actions, corresponding central and abelian extensions of G and momentum maps ${J : \mathfrak g \to V}$ .  相似文献   

14.
We give an explicit graded cellular basis of the \({\mathfrak {sl}}_3\) -web algebra \(K_S\) . In order to do this, we identify Kuperberg’s basis for the \({\mathfrak {sl}}_3\) -web space \(W_S\) with a version of Leclerc–Toffin’s intermediate crystal basis and we identify Brundan, Kleshchev and Wang’s degree of tableaux with the weight of flows on webs and the \(q\) -degree of foams. We use these observations to give a “foamy” version of Hu and Mathas graded cellular basis of the cyclotomic Hecke algebra which turns out to be a graded cellular basis of the \({\mathfrak {sl}}_3\) -web algebra. We restrict ourselves to the \({\mathfrak {sl}}_3\) case over \(\mathbb {C}\) here, but our approach should, up to the combinatorics of \({\mathfrak {sl}}_N\) -webs, work for all \(N>1\) or over \(\mathbb {Z}\) .  相似文献   

15.
Let \(p\) be a prime and let \(A\) be a nonempty subset of the cyclic group \(C_p\) . For a field \({\mathbb F}\) and an element \(f\) in the group algebra \({\mathbb F}[C_p]\) let \(T_f\) be the endomorphism of \({\mathbb F}[C_p]\) given by \(T_f(g)=fg\) . The uncertainty number \(u_{{\mathbb F}}(A)\) is the minimal rank of \(T_f\) over all nonzero \(f \in {\mathbb F}[C_p]\) such that \(\mathrm{supp}(f) \subset A\) . The following topological characterization of uncertainty numbers is established. For \(1 \le k \le p\) define the sum complex \(X_{A,k}\) as the \((k-1)\) -dimensional complex on the vertex set \(C_p\) with a full \((k-2)\) -skeleton whose \((k-1)\) -faces are all \(\sigma \subset C_p\) such that \(|\sigma |=k\) and \(\prod _{x \in \sigma }x \in A\) . It is shown that if \({\mathbb F}\) is algebraically closed then $$\begin{aligned} u_{{\mathbb F}}(A)=p-\max \{k :\tilde{H}_{k-1}(X_{A,k};{\mathbb F}) \ne 0\}. \end{aligned}$$ The main ingredient in the proof is the determination of the homology groups of \(X_{A,k}\) with field coefficients. In particular it is shown that if \(|A| \le k\) then \(\tilde{H}_{k-1}(X_{A,k};{\mathbb F}_p)\!=\!0.\)   相似文献   

16.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

17.
18.
For an oriented surface of genus $g$ with $b$ boundary components, we construct a rational map from a subset of $\mathbb{C }^{6g-6+3b}$ onto an open algebraic subset of the $\text{ PSL }(2,\mathbb C )$ -character variety as an analogue of the Fenchel-Nielsen coordinates. After taking the quotient by an action of a finite group, we obtain a parametrization of a subset of the $\text{ PSL }(2,\mathbb C )$ -character variety, and similarly for the $\text{ SL }(2,\mathbb C )$ -character variety. We can systematically calculate a set of matrix generators by rational functions of the parameters. We give transformation formulae under elementary moves of pants decompositions.  相似文献   

19.
For an entire function \(f:\mathbb C\mapsto \mathbb C\) and a triple \((p,\alpha , r)\in (0,\infty )\times (-\infty ,\infty )\times (0,\infty ]\) , the Gaussian integral mean of \(f\) (with respect to the area measure \(dA\) ) is defined by $$\begin{aligned} {\mathsf M}_{p,\alpha }(f,r)=\left( \,\, {\int \limits _{|z| Via deriving a maximum principle for \({\mathsf M}_{p,\alpha }(f,r)\) , we establish not only Fock–Sobolev trace inequalities associated with \({\mathsf M}_{p,p/2}(z^m f(z),\infty )\) (as \(m=0,1,2,\ldots \) ), but also convexities of \(r\mapsto \ln {\mathsf M}_{p,\alpha }(z^m,r)\) and \(r\mapsto {\mathsf M}_{2,\alpha <0}(f,r)\) in \(\ln r\) with \(0 .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号