首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

2.
In this paper we are concerned with the classification of the subsets A of ${\mathbb{Z}_p}$ which occur as images ${f(\mathbb{Z}_p^r)}$ of polynomial functions ${f:\mathbb{Z}_p^r\to \mathbb{Z}_p}$ , limiting ourselves to compact-open subsets (i.e. finite unions of open balls). We shall prove three main results: (i) Every compact-open ${A\subset \mathbb{Z}_p}$ is of the shape ${A=f(\mathbb{Z}_p^r)}$ for suitable r and ${f\in\mathbb{Z}_p[X_1,\ldots ,X_r]}$ . (ii) For each r 0 there is a compact-open A such that in (i) we cannot take r < r 0. (iii) For any compact-open set ${A\subset \mathbb{Z}_p}$ there exists a polynomial ${f\in\mathbb{Q}_p[X]}$ such that ${f(\mathbb{Z}_p)=A}$ . We shall also discuss in more detail which sets A can be represented as ${f(\mathbb{Z}_p)}$ for a polynomial ${f\in\mathbb{Z}_p[X]}$ in a single variable.  相似文献   

3.
Let M?=?{ 1, 2, . . . ,?n?} and let ${\mathcal {V}=\{\,I \subseteq M: 1 \in I\,\}}$ , where n is an integer greater than 1. Denote ${M{\setminus}{I}}$ by I c for ${I \in \mathcal {V}.}$ We investigate the solution of the following generalized quartic functional equation $$\begin{array}{ll} \sum\limits_{I \in\mathcal {V}}f\, \left({\sum\limits_{i \in I}}a_ix_i-\sum\limits_{i \in I^c}a_ix_i\right) \, = \,2^{n-2} \sum\limits_{1\leq i < j \leq n}a^2_{i}a^2_{j} \left[f(x_{i}+x_{j})+f(x_{i}-x_{j})\right] \\ \qquad \qquad \qquad \quad\quad\quad \quad\quad\quad\quad +\,2^{n-1} \sum\limits^{n}_{i=1}a^2_{i} \left(a^2_{i}-\sum\limits^{n}_{\substack{{j=1}\\{j\neq i}}}a^2_{j}\right)f(x_{i}) \end{array}$$ in β-Banach modules on a Banach algebra, where ${a_{1},\ldots, a_{n}\in \mathbb{Z}{\setminus}\{0\}}$ with a ? ?≠ ±1 for all ${\ell \in \{1 , 2, \ldots ,\,n-1\}}$ and a n ?=?1. Moreover, using the fixed point method, we prove the generalized Hyers–Ulam stability of the above generalized quartic functional equation. Finally, we give an example that the generalized Hyers–Ulam stability does not work.  相似文献   

4.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

5.
A function ${u : X \to \mathbb{R}}$ defined on a partially ordered set is quasi-Leontief if, for all ${x \in X}$ , the upper level set ${\{x\prime \in X : u(x\prime) \geq u(x)\}}$ has a smallest element; such an element is an efficient point of u. An abstract game ${u_{i} : \prod^{n}_{j=1} X_j \to \mathbb{R}, i \in \{1, \ldots , n\}}$ , is a quasi-Leontief game if, for all i and all ${(x_{j})_{j \neq i} \in \prod_{j \neq i} X_{j}, u_{i}((x_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ is quasi-Leontief; a Nash equilibrium x* of an abstract game ${u_{i} :\prod^{n}_{j=1} X_{j} \to \mathbb{R}}$ is efficient if, for all ${i, x^{*}_{i}}$ is an efficient point of the partial function ${u_{i}((x^{*}_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ . We establish the existence of efficient Nash equilibria when the strategy spaces X i are topological semilattices which are Peano continua and Lawson semilattices.  相似文献   

6.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

7.
This paper deals with the initial value problem of type $$\begin{array}{ll} \qquad \frac{\partial u}{\partial t} = \mathcal{L} u := \sum \limits^3_{i=0} A^{(i)} (t, x) \frac{\partial u}{\partial x_{i}} + B(t, x)u + C(t, x)\\ u (0, x) = u_{0}(x)\end{array}$$ in the space of generalized regular functions in the sense of Quaternionic Analysis satisfying the differential equation $$\mathcal{D}_{\lambda}u := \mathcal{D} u + \lambda u = 0,$$ where ${t \in [0, T]}$ is the time variable, x runs in a bounded and simply connected domain in ${\mathbb{R}^{4}, \lambda}$ is a real number, and ${\mathcal{D}}$ is the Cauchy-Fueter operator. We prove necessary and sufficient conditions on the coefficients of the operator ${\mathcal{L}}$ under which ${\mathcal{L}}$ is associated with the operator ${\mathcal{D}_{\lambda}}$ , i.e. ${\mathcal{L}}$ transforms the set of all solutions of the differential equation ${\mathcal{D}_{\lambda}u = 0}$ into solutions of the same equation for fixedly chosen t. This criterion makes it possible to construct operators ${\mathcal{L}}$ for which the initial value problem is uniquely soluble for an arbitrary initial generalized regular function u 0 by the method of associated spaces constructed by W. Tutschke (Teubner Leipzig and Springer Verlag, 1989) and the solution is also generalized regular for each t.  相似文献   

8.
Linear recurring sequences over finite fields play an important role in coding theory and cryptography. It is known that subfield subcodes of linear codes yield some good codes. In this paper, we study linear recurring sequences and subfield subcodes. Let Mqm(f(x)) denote the set of all linear recurring sequences over Fqm with characteristic polynomial f(x) over Fqm . Denote the restriction of Mqm(f(x)) to sequences over Fq and the set after applying trace function to each sequence in Mqm(f(x)) by Mqm(f(x)) | Fq and Tr( Mqm(f(x))), respectively. It is shown that these two sets are both complete sets of linear recurring sequences over Fq with some characteristic polynomials over Fq. In this paper, we firstly determine the characteristic polynomials for these two sets. Then, using these results, we determine the generator polynomials of subfield subcodes and trace codes of cyclic codes over Fqm .  相似文献   

9.
Let p be a prime and let $\varphi\in\mathbb{Z}_{p}[x_{1},x_{2},\ldots, x_{p}]$ be a symmetric polynomial, where  $\mathbb {Z}_{p}$ is the field of p elements. A sequence T in  $\mathbb {Z}_{p}$ of length p is called a φ-zero sequence if φ(T)=0; a sequence in $\mathbb {Z}_{p}$ is called a φ-zero free sequence if it does not contain any φ-zero subsequence. Motivated by the EGZ theorem for the prime p, we consider symmetric polynomials $\varphi\in \mathbb {Z}_{p}[x_{1},x_{2},\ldots, x_{p}]$ , which satisfy the following two conditions: (i) every sequence in  $\mathbb {Z}_{p}$ of length 2p?1 contains a φ-zero subsequence, and (ii) the φ-zero free sequences in  $\mathbb {Z}_{p}$ of maximal length are all those containing exactly two distinct elements, where each element appears p?1 times. In this paper, we determine all symmetric polynomials in $\mathbb {Z}_{p}[x_{1},x_{2},\ldots, x_{p}]$ of degree not exceeding 3 satisfying the conditions above.  相似文献   

10.
Let X be an ANR (absolute neighborhood retract), ${\Lambda}$ a k-dimensional topological manifold with topological orientation ${\eta}$ , and ${f : D \rightarrow X}$ a locally compact map, where D is an open subset of ${X \times \Lambda}$ . We define Fix(f) as the set of points ${{(x, \lambda) \in D}}$ such that ${x = f(x, \lambda)}$ . For an open pair (U, V) in ${X \times \Lambda}$ such that ${{\rm Fix}(f) \cap U \backslash V}$ is compact we construct a homomorphism ${\Sigma_{(f,U,V)} : H^{k}(U, V ) \rightarrow R}$ in the singular cohomologies H* over a ring-with-unit R, in such a way that the properties of Solvability, Excision and Naturality, Homotopy Invariance, Additivity, Multiplicativity, Normalization, Orientation Invariance, Commutativity, Contraction, Topological Invariance, and Ring Naturality hold. In the case of a ${C^{\infty}}$ -manifold ${\Lambda}$ , these properties uniquely determine ${\Sigma}$ . By passing to the direct limit of ${\Sigma_{(f,U,V)}}$ with respect to the pairs (U, V) such that ${K = {\rm Fix}(f) \cap U \backslash V}$ , we define a homomorphism ${\sigma_{(f,K)} : {H}_{k}({\rm Fix}(f), Fix(f) \backslash K) \rightarrow R}$ in the ?ech cohomologies. Properties of ${\Sigma}$ and ${\sigma}$ are equivalent each to the other. We indicate how the homomorphisms generalize the fixed point index.  相似文献   

11.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

12.
13.
A broadcast on a nontrivial connected graph G is a function ${f:V \longrightarrow \{0, \ldots,\operatorname{diam}(G)\}}$ such that for every vertex ${v \in V(G)}$ , ${f(v) \leq e(v)}$ , where ${\operatorname{diam}(G)}$ denotes the diameter of G and e(v) denotes the eccentricity of vertex v. The broadcast independence number is the maximum value of ${\sum_{v \in V} f(v)}$ over all broadcasts f that satisfy ${d(u,v) > \max \{f(u), f(v)\}}$ for every pair of distinct vertices u, v with positive values. We determine this invariant for grid graphs ${G_{m,n} = P_m \square P_n}$ , where ${2 \leq m \leq n}$ and □ denotes the Cartesian product. We hereby answer one of the open problems raised by Dunbar et al. in (Discrete Appl Math 154:59–75, 2006).  相似文献   

14.
We prove that if ${U\subset \mathbb {R}^n}$ is an open domain whose closure ${\overline U}$ is compact in the path metric, and F is a Lipschitz function on ?U, then for each ${\beta \in \mathbb {R}}$ there exists a unique viscosity solution to the β-biased infinity Laplacian equation $$\beta |\nabla u| + \Delta_\infty u=0$$ on U that extends F, where ${\Delta_\infty u= |\nabla u|^{-2} \sum_{i,j} u_{x_i}u_{x_ix_j} u_{x_j}}$ . In the proof, we extend the tug-of-war ideas of Peres, Schramm, Sheffield and Wilson, and define the β-biased ${\epsilon}$ -game as follows. The starting position is ${x_0 \in U}$ . At the kth step the two players toss a suitably biased coin (in our key example, player I wins with odds of ${\exp(\beta\epsilon)}$ to 1), and the winner chooses x k with ${d(x_k,x_{k-1}) < \epsilon}$ . The game ends when ${x_k \in \partial U}$ , and player II pays the amount F(x k ) to player I. We prove that the value ${u^{\epsilon}(x_0)}$ of this game exists, and that ${\|u^\epsilon - u\|_\infty \to 0}$ as ${\epsilon \to 0}$ , where u is the unique extension of F to ${\overline{U}}$ that satisfies comparison with β-exponential cones. Comparison with exponential cones is a notion that we introduce here, and generalizing a theorem of Crandall, Evans and Gariepy regarding comparison with linear cones, we show that a continuous function satisfies comparison with β-exponential cones if and only if it is a viscosity solution to the β-biased infinity Laplacian equation.  相似文献   

15.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

16.
We consider semi-infinite programming problems ${{\rm SIP}(z)}$ depending on a finite dimensional parameter ${z \in \mathbb{R}^p}$ . Provided that ${\bar{x}}$ is a strongly stable stationary point of ${{\rm SIP}(\bar{z})}$ , there exists a locally unique and continuous stationary point mapping ${z \mapsto x(z)}$ . This defines the local critical value function ${\varphi(z) := f(x(z); z)}$ , where ${x \mapsto f(x; z)}$ denotes the objective function of ${{\rm SIP}(z)}$ for a given parameter vector ${z\in \mathbb{R}^p}$ . We show that ${\varphi}$ is the sum of a convex function and a smooth function. In particular, this excludes the appearance of negative kinks in the graph of ${\varphi}$ .  相似文献   

17.
We generalize the well-known Lax-Milgram theorem on the Hilbert space to that on the Banach space. Suppose that ${a(\cdot, \cdot)}$ is a continuous bilinear form on the product ${X\times Y}$ of Banach spaces X and Y, where Y is reflexive. If null spaces N X and N Y associated with ${a(\cdot, \cdot)}$ have complements in X and in Y, respectively, and if ${a(\cdot, \cdot)}$ satisfies certain variational inequalities both in X and in Y, then for every ${F \in N_Y^{\perp}}$ , i.e., ${F \in Y^{\ast}}$ with ${F(\phi) = 0}$ for all ${\phi \in N_Y}$ , there exists at least one ${u \in X}$ such that ${a(u, \varphi) = F(\varphi)}$ holds for all ${\varphi \in Y}$ with ${\|u\|_X \le C\|F\|_{Y^{\ast}}}$ . We apply our result to several existence theorems of L r -solutions to the elliptic system of boundary value problems appearing in the fluid mechanics.  相似文献   

18.
This paper addresses the question of retrieving the triple ${(\mathcal X,\mathcal P, E)}$ from the algebraic geometry code ${\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}$ , where ${\mathcal X}$ is an algebraic curve over the finite field ${\mathbb F_q, \,\mathcal P}$ is an n-tuple of ${\mathbb F_q}$ -rational points on ${\mathcal X}$ and E is a divisor on ${\mathcal X}$ . If ${\deg(E)\geq 2g+1}$ where g is the genus of ${\mathcal X}$ , then there is an embedding of ${\mathcal X}$ onto ${\mathcal Y}$ in the projective space of the linear series of the divisor E. Moreover, if ${\deg(E)\geq 2g+2}$ , then ${I(\mathcal Y)}$ , the vanishing ideal of ${\mathcal Y}$ , is generated by ${I_2(\mathcal Y)}$ , the homogeneous elements of degree two in ${I(\mathcal Y)}$ . If ${n >2 \deg(E)}$ , then ${I_2(\mathcal Y)=I_2(\mathcal Q)}$ , where ${\mathcal Q}$ is the image of ${\mathcal P}$ under the map from ${\mathcal X}$ to ${\mathcal Y}$ . These three results imply that, if ${2g+2\leq m < \frac{1}{2}n}$ , an AG representation ${(\mathcal Y, \mathcal Q, F)}$ of the code ${\mathcal C}$ can be obtained just using a generator matrix of ${\mathcal C}$ where ${\mathcal Y}$ is a normal curve in ${\mathbb{P}^{m-g}}$ which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.  相似文献   

19.
Christian Delhommé 《Order》2006,23(2-3):221-233
We observe that, given a poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ and a finite covering ${\user1{\mathcal{R}}} = {\user1{\mathcal{R}}}_{1} \cup \cdots \cup {\user1{\mathcal{R}}}_{n} $ of its ordering, the height of the poset does not exceed the natural product of the heights of the corresponding sub-relations: $$\mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}} \right)} \leqslant \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{1} } \right)} \otimes \cdots \otimes \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{n} } \right)}.$$ Conversely for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, every poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ of height at most $\xi_1\otimes\cdots\otimes\xi_n$ admits a partition ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ such that each ${\left( {E,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at most $\xi_k$ . In particular for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, the ordinal $$\xi _{1} \underline{ \otimes } \cdots \underline{ \otimes } \xi _{n} : = \sup {\left\{ {{\left( {\xi ^{\prime }_{1} \otimes \cdots \otimes \xi ^{\prime }_{n} } \right)} + 1:\xi ^{\prime }_{1} < \xi _{1} , \cdots ,\xi ^{\prime }_{n} < \xi _{n} } \right\}}$$ is the least $\xi$ for which the following partition relation holds $$\mathfrak{H}_{\xi } \to {\left( {\mathfrak{H}_{{\xi _{1} }} , \cdots ,\mathfrak{H}_{{\xi _{n} }} } \right)}^{2} $$ meaning: for every poset ${\left( {A,{\user1{\mathcal{R}}}} \right)}$ of height at least $\xi$ and every finite covering ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ , there is a $k$ for which the relation ${\left( {A,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at least $\xi_k$ . The proof will rely on analogue properties of vertex coverings w.r.t. the natural sum.  相似文献   

20.
Let ${\mathcal{C}}$ be the convex hull of points ${{\{{1 \choose x}{1 \choose x}^T \,|\, x\in \mathcal{F}\subset \Re^n\}}}$ . Representing or approximating ${\mathcal{C}}$ is a fundamental problem for global optimization algorithms based on convex relaxations of products of variables. We show that if n ≤ 4 and ${\mathcal{F}}$ is a simplex, then ${\mathcal{C}}$ has a computable representation in terms of matrices X that are doubly nonnegative (positive semidefinite and componentwise nonnegative). We also prove that if n = 2 and ${\mathcal{F}}$ is a box, then ${\mathcal{C}}$ has a representation that combines semidefiniteness with constraints on product terms obtained from the reformulation-linearization technique (RLT). The simplex result generalizes known representations for the convex hull of ${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$ when ${\mathcal{F}\subset\Re^2}$ is a triangle, while the result for box constraints generalizes the well-known fact that in this case the RLT constraints generate the convex hull of ${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$ . When n = 3 and ${\mathcal{F}}$ is a box, we show that a representation for ${\mathcal{C}}$ can be obtained by utilizing the simplex result for n = 4 in conjunction with a triangulation of the 3-cube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号