首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
数学   67篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
The identification of breast cancer patients for whom chemotherapy could prolong survival time is treated here as a data mining problem. This identification is achieved by clustering 253 breast cancer patients into three prognostic groups: Good, Poor and Intermediate. Each of the three groups has a significantly distinct Kaplan-Meier survival curve. Of particular significance is the Intermediate group, because patients with chemotherapy in this group do better than those without chemotherapy in the same group. This is the reverse case to that of the overall population of 253 patients for which patients undergoing chemotherapy have worse survival than those who do not. We also prescribe a procedure that utilizes three nonlinear smooth support vector machines (SSVMs) for classifying breast cancer patients into the three above prognostic groups. These results suggest that the patients in the Good group should not receive chemotherapy while those in the Intermediate group should receive chemotherapy based on our survival curve analysis. To our knowledge this is the first instance of a classifiable group of breast cancer patients for which chemotherapy can possibly enhance survival.  相似文献   
2.
The nonmonotone linear complementarity problem (LCP) is formulated as a bilinear program with separable constraints and an objective function that minimizes a natural error residual for the LCP. A linear-programming-based algorithm applied to the bilinear program terminates in a finite number of steps at a solution or stationary point of the problem. The bilinear algorithm solved 80 consecutive cases of the LCP formulation of the knapsack feasibility problem ranging in size between 10 and 3000, with almost constant average number of major iterations equal to four.This material is based on research supported by Air Force Office of Scientific Research Grant F49620-94-1-0036 and National Science Foundation Grants CCR-9322479 and CDA-9024618.  相似文献   
3.
For a solvable monotone complementarity problem we show that each feasible point which is not a solution of the problem provides simple numerical bounds for some or all components of all solution vectors. Consequently for a solvable differentiable convex program each primal-dual feasible point which is not optimal provides simple bounds for some or all components of all primal-dual solution vectors. We also give an existence result and simple bounds for solutions of monotone compementarity problems satisfying a new, distributed constraint qualification. This result carries over to a simple existence and boundedness result for differentiable convex programs satisfying a similar constraint qualification.Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based on work sponsored by National Science Foundation Grants MCS-8200632 and MCS-8102684.  相似文献   
4.
A gradient projection successive overrelaxation (GP-SOR) algorithm is proposed for the solution of symmetric linear complementary problems and linear programs. A key distinguishing feature of this algorithm is that when appropriately parallelized, the relaxation factor interval (0, 2) isnot reduced. In a previously proposed parallel SOR scheme, the substantially reduced relaxation interval mandated by the coupling terms of the problem often led to slow convergence. The proposed parallel algorithm solves a general linear program by finding its least 2-norm solution. Efficiency of the algorithm is in the 50 to 100 percent range as demonstrated by computational results on the CRYSTAL token-ring multicomputer and the Sequent Balance 21000 multiprocessor.This material is based on research supported by National Science Foundation Grants DCR-8420963 and DCR-8521228 and Air Force Office of Scientific Research Grants AFOSR-86-0172 and AFOSR-86-0255.  相似文献   
5.
Given an arbitrary point (x, u) inR n × R + m , we give bounds on the Euclidean distance betweenx and the unique solution to a strongly convex program in terms of the violations of the Karush-Kuhn-Tucker conditions by the arbitrary point (x, u). These bounds are then used to derive linearly and superlinearly convergent iterative schemes for obtaining the unique least 2-norm solution of a linear program. These schemes can be used effectively in conjunction with the successive overrelaxation (SOR) methods for solving very large sparse linear programs.Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based on research sponsored by National Science Foundation Grant No. DCR-8420963 and Air Force Office of Scientific Research Grant No. AFOSR-ISSA-85-00080.On leave from CRAI, via Bernini 5, Rende, Cosenza, Italy.  相似文献   
6.
Misclassification minimization   总被引:1,自引:0,他引:1  
The problem of minimizing the number of misclassified points by a plane, attempting to separate two point sets with intersecting convex hulls inn-dimensional real space, is formulated as a linear program with equilibrium constraints (LPEC). This general LPEC can be converted to an exact penalty problem with a quadratic objective and linear constraints. A Frank-Wolfe-type algorithm is proposed for the penalty problem that terminates at a stationary point or a global solution. Novel aspects of the approach include: (i) A linear complementarity formulation of the step function that counts misclassifications, (ii) Exact penalty formulation without boundedness, nondegeneracy or constraint qualification assumptions, (iii) An exact solution extraction from the sequence of minimizers of the penalty function for a finite value of the penalty parameter for the general LPEC and an explicitly exact solution for the LPEC with uncoupled constraints, and (iv) A parametric quadratic programming formulation of the LPEC associated with the misclassification minimization problem.This material is based on research supported by Air Force Office of Scientific Research Grant F49620-94-1-0036 and National Science Foundation Grants CCR-9101801 and CDA-9024618.  相似文献   
7.
Hybrid misclassification minimization   总被引:1,自引:0,他引:1  
Given two finite point setsA andB in then-dimensional real spaceR n , we consider the NP-complete problem of minimizing the number of misclassified points by a plane attempting to divideR n into two halfspaces such that each open halfspace contains points mostly ofA orB. This problem is equivalent to determining a plane {x | x T w=} that maximizes the number of pointsx A satisfying inx T w>, plus the number of pointsx B satisfyingx T w<. A simple but fast algorithm is proposed that alternates between (i) minimizing the number of misclassified points by translation of the separating plane, and (ii) a rotation of the plane so that it minimizes a weighted average sum of the distances of the misclassified points to the separating plane. Existence of a global solution to an underlying hybrid minimization problem is established. Computational comparison with a parametric approach to solve the NP-complete problem indicates that our approach is considerably faster and appears to generalize better as determined by tenfold cross-validation.This material is based on research supported by Air Force Office of Scientific Research Grant F49620-94-1-0036 and National Science Foundation Grant CCR-9322479.  相似文献   
8.
Smoothing methods for convex inequalities and linear complementarity problems   总被引:27,自引:0,他引:27  
A smooth approximationp (x, ) to the plus function max{x, 0} is obtained by integrating the sigmoid function 1/(1 + ex ), commonly used in neural networks. By means of this approximation, linear and convex inequalities are converted into smooth, convex unconstrained minimization problems, the solution of which approximates the solution of the original problem to a high degree of accuracy for sufficiently large. In the special case when a Slater constraint qualification is satisfied, an exact solution can be obtained for finite. Speedup over MINOS 5.4 was as high as 1142 times for linear inequalities of size 2000 × 1000, and 580 times for convex inequalities with 400 variables. Linear complementarity problems are converted into a system of smooth nonlinear equations and are solved by a quadratically convergent Newton method. For monotone LCPs with as many as 10 000 variables, the proposed approach was as much as 63 times faster than Lemke's method.This material is based on research supported by Air Force Office of Scientific Research Grant F49620-94-1-0036 and National Science Foundation Grants CCR-9101801 and CCR-9322479.  相似文献   
9.
A unified treatment is given for iterative algorithms for the solution of the symmetric linear complementarity problem: $$Mx + q \geqslant 0, x \geqslant 0, x^T (Mx + q) = 0$$ , whereM is a givenn×n symmetric real matrix andq is a givenn×1 vector. A general algorithm is proposed in which relaxation may be performed both before and after projection on the nonnegative orthant. The algorithm includes, as special cases, extensions of the Jacobi, Gauss-Seidel, and nonsymmetric and symmetric successive over-relaxation methods for solving the symmetric linear complementarity problem. It is shown first that any accumulation point of the iterates generated by the general algorithm solves the linear complementarity problem. It is then shown that a class of matrices, for which the existence of an accumulation point that solves the linear complementarity problem is guaranteed, includes symmetric copositive plus matrices which satisfy a qualification of the type: $$Mx + q > 0 for some x in R^n $$ . Also included are symmetric positive-semidefinite matrices satisfying this qualification, symmetric, strictly copositive matrices, and symmetric positive matrices. Furthermore, whenM is symmetric, copositive plus, and has nonzero principal subdeterminants, it is shown that the entire sequence of iterates converges to a solution of the linear complementarity problem.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号