首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Separable nonlinear least squares problems are a special class of nonlinear least squares problems, where the objective functions are linear and nonlinear on different parts of variables. Such problems have broad applications in practice. Most existing algorithms for this kind of problems are derived from the variable projection method proposed by Golub and Pereyra, which utilizes the separability under a separate framework. However, the methods based on variable projection strategy would be invalid if there exist some constraints to the variables, as the real problems always do, even if the constraint is simply the ball constraint. We present a new algorithm which is based on a special approximation to the Hessian by noticing the fact that certain terms of the Hessian can be derived from the gradient. Our method maintains all the advantages of variable projection based methods, and moreover it can be combined with trust region methods easily and can be applied to general constrained separable nonlinear problems. Convergence analysis of our method is presented and numerical results are also reported.  相似文献   

2.
In this paper, we propose a local multilevel preconditioner for the mortar finite element approximations of the elliptic problems. With some mesh assumptions on the interface, we prove that the condition number of the preconditioned systems is independent of the large jump of the coefficients but depends on the mesh levels around the cross points. Some numericM experiments are presented to confirm our theoreticM results.  相似文献   

3.
We consider the permeability estimation problem in two-phase porous media flow. We try to identify the permeability field by utilizing both the production data from wells as well as inverted seismic data. The permeability field is assumed to be piecewise constant, or can be approximated well by a piecewise constant function. A variant of the level set method, called Piecewise Constant Level Set Method is used to represent the interfaces between the regions with different permeability levels. The inverse problem is solved by minimizing a functional, and TV norm regularization is used to deal with the ill-posedness. We also use the operator-splitting technique to decompose the constraint term from the fidelity term. This gives us more flexibility to deal with the constraint and helps to stabilize the algorithm.  相似文献   

4.
In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the most widely used meshfree methods for solving partial differential equations. The RHSS preconditioner is constructed much closer to the coefficient matrix than the well-known HSS preconditioner, resulting in a RHSS fixed-point iteration. Convergence of the RHSS iteration is analyzed and an optimal parameter, which minimizes the spectral radius of the iteration matrix is described. Using the RHSS pre- conditioner to accelerate the convergence of some Krylov subspace methods (like GMRES) is also studied. Theoretical analyses show that the eigenvalues of the RHSS precondi- tioned matrix are real and located in a positive interval. Eigenvector distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are obtained. A practical parameter is suggested in implementing the RHSS preconditioner. Finally, some numerical experiments are illustrated to show the effectiveness of the new preconditioner.  相似文献   

5.
Consider a time-harmonic electromagnetic plane wave incident on a biperiodic structure in R^3. The periodic structure separates two homogeneous regions. The medium inside the structure is chiral and nonhomogeneous. In this paper, variational formulations coupling finite element methods in the chiral medium with a method of integral equations on the periodic interfaces are studied. The well-posedness of the continuous and discretized problems is established. Uniform convergence for the coupling variational approximations of the model problem is obtained.  相似文献   

6.
In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorithm under reasonable assumptions.  相似文献   

7.
Recently numerous numerical experiments on realistic calculation have shown that the conjugate A-orthogonal residual squared (CORS) method is often competitive with other popular methods. However, the CORS method, like the CGS method, shows irreg- ular convergence, especially appears large intermediate residual norm, which may lead to worse approximate solutions and slower convergence rate. In this paper, we present a new product-type method for solving complex non-Hermitian linear systems based on the bicon- jugate A-orthogonal residual (BiCOR) method, where one of the polynomials is a BiCOR polynomial, and the other is a BiCOR polynomial with the same degree corresponding to different initial residual. Numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

8.
In this paper, we present further development of the local discontinuous Galerkin (LDG) method designed in [21] and a new dissipative discontinuous Galerkin (DG) method for the HuntermSaxton equation. The numerical fluxes for the LDG and DG methods in this paper are based on the upwinding principle. The resulting schemes provide additional energy dissipation and better control of numerical oscillations near derivative singularities. Stability and convergence of the schemes are proved theoretically, and numerical simulation results are provided to compare with the scheme in [21].  相似文献   

9.
In this paper, we consider the finite element method and discontinuous Galerkin method for the stochastic Helmholtz equation in R^d (d = 2, 3). Convergence analysis and error estimates are presented for the numerical solutions. The effects of the noises on the accuracy of the approximations are illustrated. Numerical experiments are carried out to verify our theoretical results.  相似文献   

10.
The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally convergent iteration method for solving large sparse non-Hermitian positive definite system of linear equations. By making use of the HSS iteration as the inner solver for the Newton method, we establish a class of Newton-HSS methods for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices at the solution points. For this class of inexact Newton methods, two types of local convergence theorems are proved under proper conditions, and numerical results are given to examine their feasibility and effectiveness. In addition, the advantages of the Newton-HSS methods over the Newton-USOR, the Newton-GMRES and the Newton-GCG methods are shown through solving systems of nonlinear equations arising from the finite difference discretization of a two-dimensional convection-diffusion equation perturbed by a nonlinear term. The numerical implemen- tations also show that as preconditioners for the Newton-GMRES and the Newton-GCG methods the HSS iteration outperforms the USOR iteration in both computing time and iteration step.  相似文献   

11.
The artificial boundary method is applied to solve three-dimensional exterior problems. Two kind of rotating ellipsoids are chosen as the artificial boundaries and the exact artificial boundary conditions are derived explicitly in terms of an infinite series. Then the well-posedness of the coupled variational problem is obtained. It is found that error estimates derived depend on the mesh size, truncation term and the location of the artificial boundary. Three numerical examples are presented to demonstrate the effectiveness and accuracy of the proposed method.  相似文献   

12.
In this paper the homotopy continuation method for stochastic two-point boundary value problems driven by additive noises is studied. The existence of the solution of the homotopy equation is proved. Numerical schemes are constructed and error estimates are obtained. Numerical experiments demonstrate the effectiveness of the homotopy continu- ation method over other commonly used methods such as the shooting method.  相似文献   

13.
In this work we consider the Reduced Basis method for the solution of parametrized advection-reaction partial differential equations. For the generation of the basis we adopt a stabilized finite element method and we define the Reduced Basis method in the "primal- dual" formulation for this stabilized problem. We provide a priori Reduced Basis error estimates and we discuss the effects of the finite element approximation on the Reduced Basis error. We propose an adaptive algorithm, based on the a posteriori Reduced Basis error estimate, for the selection of the sample sets upon which the basis are built; the idea leading this algorithm is the minimization of the computational costs associated with the solution of the Reduced Basis problem. Numerical tests demonstrate the efficiency, in terms of computational costs, of the "primal-dual" Reduced Basis approach with respect to an "only primal" one. Parametrized advection-reaction partial differential equations, Reduced Basis method, "primal-dual" reduced basis approach, Stabilized finite element method, a posteriori error estimation.  相似文献   

14.
We propose and analyze a C^0 spectral element method for a model eigenvalue problem with discontinuous coefficients in the one dimensional setting. A super-geometric rate of convergence is proved for the piecewise constant coefficients case and verified by numerical tests. Furthermore, the asymptotical equivalence between a Gauss-Lobatto collocation method and a spectral Galerkin method is established for a simplified model.  相似文献   

15.
This paper covers the dynamics problems. The review and some aspects of main development stages of using Multigrid method for fluid multigrid technics are presented. Some approaches for solving Navier-Stokes equations and convection- diffusion problems are considered.  相似文献   

16.
High order fast sweeping methods have been developed recently in the literature to solve static Hamilton-Jacobi equations efficiently. Comparing with the first order fast sweeping methods, the high order fast sweeping methods are more accurate, but they often require additional numerical boundary treatment for several grid points near the boundary because of the wider numerical stencil. It is particularly important to treat the points near the inflow boundary accurately, as the information would flow into the computational domain and would affect global accuracy. In the literature, the numerical solution at these boundary points are either fixed with the exact solution, which is not always feasible, or computed with a first order discretization, which could reduce the global accuracy. In this paper, we discuss two strategies to handle the inflow boundary conditions. One is based on the numerical solutions of a first order fast sweeping method with several different mesh sizes near the boundary and a Richardson extrapolation, the other is based on a Lax-Wendroff type procedure to repeatedly utilizing the PDE to write the normal spatial derivatives to the inflow boundary in terms of the tangential derivatives, thereby obtaining high order solution values at the grid points near the inflow boundary. We explore these two approaches using the fast sweeping high order WENO scheme in [18] for solving the static Eikonal equation as a representative example. Numerical examples are given to demonstrate the performance of these two approaches.  相似文献   

17.
This paper detailedly discusses the locally one-dimensional numerical methods for ef- ficiently solving the three-dimensional fractional partial differential equations, including fractional advection diffusion equation and Riesz fractional diffusion equation. The second order finite difference scheme is used to discretize the space fractional derivative and the Crank-Nicolson procedure to the time derivative. We theoretically prove and numerically verify that the presented numerical methods are unconditionally stable and second order convergent in both space and time directions. In particular, for the Riesz fractional dif- fusion equation, the idea of reducing the splitting error is used to further improve the algorithm, and the unconditional stability and convergency are also strictly proved and numerically verified for the improved scheme.  相似文献   

18.
This paper discusses the asymptotic behaviors of the longest run on a countable state Markov chain.Let {Xa} a∈Z + be a stationary strongly ergodic reversible Markov chain on countablestate space S = {1,2,...}.Let TS be an arbitrary finite subset of S.Denote by Ln the length of the longest run of consecutive i's for i∈T,that occurs in the sequence X1,...,Xn.In this paper,we obtain a limit law and a week version of an Erds-Rényi type law for Ln.A large deviation result of Ln is also discussed.  相似文献   

19.
In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most interesting features of the proposed methods are its extreme simplicity and concise forms of iteration formula for a wide range of nonlinear problems.  相似文献   

20.
Minimization of the weighted nonlinear sum of squares of differences may be converted to the minimization of sum of squares. The Gauss-Newton method is recalled and the length of the step of the steepest descent method is determined by substituting the steepest descent direction in the Gauss-Newton formula. The existence of minimum is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号