首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this paper, we consider a two-grid method for resolving the nonlinearity in finite element approximations of the equilibrium Navier–Stokes equations. We prove the convergence rate of the approximation obtained by this method. The two-grid method involves solving one small, nonlinear coarse mesh system and two linear problems on the fine mesh which have the same stiffness matrix with only different right-hand side. The algorithm we study produces an approximate solution with the optimal asymptotic in h and accuracy for any Reynolds number. Numerical example is given to show the convergence of the method.  相似文献   

2.
We study the asymptotic rate of convergence of the alternating Hermitian/skew-Hermitian iteration for solving saddle-point problems arising in the discretization of elliptic partial differential equations. By a careful analysis of the iterative scheme at the continuous level we determine optimal convergence parameters for the model problem of the Poisson equation written in div-grad form. We show that the optimized convergence rate for small mesh parameter h is asymptotically 1–O(h 1/2). Furthermore we show that when the splitting is used as a preconditioner for a Krylov method, a different optimization leading to two clusters in the spectrum gives an optimal, h-independent, convergence rate. The theoretical analysis is supported by numerical experiments.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
This paper deals with optimal control problems constrained by linear elliptic partial differential equations. The case where the right‐hand side of the Neumann boundary is controlled, is studied. The variational discretization concept for these problems is applied, and discretization error estimates are derived. On polyhedral domains, one has to deal with edge and corner singularities, which reduce the convergence rate of the discrete solutions, that is, one cannot expect convergence order two for linear finite elements on quasi‐uniform meshes in general. As a remedy, a local mesh refinement strategy is presented, and a priori bounds for the refinement parameters are derived such that convergence with optimal rate is guaranteed. As a by‐product, finite element error estimates in the H1(Ω)‐norm, L2(Ω)‐norm and L2(Γ)‐norm for the boundary value problem are obtained, where the latter one turned out to be the main challenge. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A projection–difference method is developed for approximating controlled Fourier filtering for quasilinear parabolic functional-differential equations. The method relies on a projection–difference scheme (PDS) for the approximation of the differential problem and derives a O1/2 + h) bound on the rate of convergence of PDS in the weighted energy norm without prior assumptions of additional smoothness of the generalized solutions. The PDS leads to a natural approximation of the objective functional in the optimal Fourier filtering problem. A bound of the same order is obtained for the rate of convergence in the functional of the problems approximating the Fourier filter control problem.  相似文献   

5.
Dynamic programming techniques have proven to be more successful than alternative nonlinear programming algorithms for solving many discrete-time optimal control problems. The reason for this is that, because of the stagewise decomposition which characterizes dynamic programming, the computational burden grows approximately linearly with the numbern of decision times, whereas the burden for other methods tends to grow faster (e.g.,n 3 for Newton's method). The idea motivating the present study is that the advantages of dynamic programming can be brought to bear on classical nonlinear programming problems if only they can somehow be rephrased as optimal control problems.As shown herein, it is indeed the case that many prominent problems in the nonlinear programming literature can be viewed as optimal control problems, and for these problems, modern dynamic programming methodology is competitive with respect to processing time. The mechanism behind this success is that such methodology achieves quadratic convergence without requiring solution of large systems of linear equations.  相似文献   

6.
Coupling techniques are essential to combining different numerical methods together for the purpose of solving an elliptic boundary value problem. By means of nonconforming constraints, the combinations of various Lagrange finite element methods often cause reduced rates of convergence. In this article, we present a method using penalty plus hybrid technique to match different finite element methods such that the optimal convergence rates in the ‖ · ‖h and zero norms of errors of the solution can always be achieved. Also, such a coupling technique will lead to an optimal asymptotic condition number for the associated coefficient matrix. Moreover, this study can easily be extended for combining the finite difference method with the finite element method to also yield the optimal rate of convergence.  相似文献   

7.
In this paper a nonlinear penalty method via a nonlinear Lagrangian function is introduced for semi-infinite programs. A convergence result is established which shows that the sequence of optimal values of nonlinear penalty problems converges to that of semi-infinite programs. Moreover a conceptual convergence result of a discretization method with an adaptive scheme for solving semi-infinite programs is established. Preliminary numerical experiments show that better optimal values for some nonlinear semi-infinite programs can be obtained using the nonlinear penalty method.  相似文献   

8.
Numerical methods are proposed for solving finite-dimensional convex problems with inequality constraints satisfying the Slater condition. A method based on solving the dual to the original regularized problem is proposed and justified for problems having a strictly uniformly convex sum of the objective function and the constraint functions. Conditions for the convergence of this method are derived, and convergence rate estimates are obtained for convergence with respect to the functional, convergence with respect to the argument to the set of optimizers, and convergence to the g-normal solution. For more general convex finite-dimensional minimization problems with inequality constraints, two methods with finite-step inner algorithms are proposed. The methods are based on the projected gradient and conditional gradient algorithms. The paper is focused on finite-dimensional problems obtained by approximating infinite-dimensional problems, in particular, optimal control problems for systems with lumped or distributed parameters.  相似文献   

9.
Preconditioning strategies based on incomplete factorizations and polynomial approximations are studied through extensive numerical experiments. We are concerned with the question of the optimal rate of convergence that can be achieved for these classes of preconditioners.Our conclusion is that the well-known Modified Incomplete Cholesky factorization (MIC), cf. e.g., Gustafsson [20], and the polynomial preconditioning based on the Chebyshev polynomials, cf. Johnson, Micchelli and Paul [22], have optimal order of convergence as applied to matrix systems derived by discretization of the Poisson equation. Thus for the discrete two-dimensional Poisson equation withn unknowns,O(n 1/4) andO(n 1/2) seem to be the optimal rates of convergence for the Conjugate Gradient (CG) method using incomplete factorizations and polynomial preconditioners, respectively. The results obtained for polynomial preconditioners are in agreement with the basic theory of CG, which implies that such preconditioners can not lead to improvement of the asymptotic convergence rate.By optimizing the preconditioners with respect to certain criteria, we observe a reduction of the number of CG iterations, but the rates of convergence remain unchanged.Supported by The Norwegian Research Council for Science and the Humanities (NAVF) under grants no. 413.90/002 and 412.93/005.Supported by The Royal Norwegian Council for Scientific and Industrial Research (NTNF) through program no. STP.28402: Toolkits in industrial mathematics.  相似文献   

10.
We presented a new logarithmic-quadratic proximal alternating direction scheme for the separable constrained convex programming problem. The predictor is obtained by solving series of related systems of non-linear equations in a parallel wise. The new iterate is obtained by searching the optimal step size along a new descent direction. The new direction is obtained by the linear combination of two descent directions. Global convergence of the proposed method is proved under certain assumptions. We show the O(1 / t) convergence rate for the parallel LQP alternating direction method.  相似文献   

11.
The convergence rate of the boundary penalty finite element method is discussed for a model Poisson equation with inhomogeneous Dirichlet boundary conditions and a sufficiently smooth solution. It is proved that an optimal convergence rate can be achieved which agrees with the rate obtained recently in the numerical experiments by Utku and Carey.  相似文献   

12.
When solving large size systems of equations by preconditioned iterative solution methods, one normally uses a fixed preconditioner which may be defined by some eigenvalue information, such as in a Chebyshev iteration method. In many problems, however, it may be more effective to use variable preconditioners, in particular when the eigenvalue information is not available. In the present paper, a recursive way of constructing variable-step of, in general, nonlinear multilevel preconditioners for selfadjoint and coercive second-order elliptic problems, discretized by the finite element method is proposed. The preconditioner is constructed recursively from the coarsest to finer and finer levels. Each preconditioning step requires only block-diagonal solvers at all levels except at every k0, k0 ≥ 1 level where we perform a sufficient number ν, ν ≥ 1 of GCG-type variable-step iterations that involve the use again of a variable-step preconditioning for that level. It turns out that for any sufficiently large value of k0 and, asymptotically, for ν sufficiently large, but not too large, the method has both an optimal rate of convergence and an optimal order of computational complexity, both for two and three space dimensional problem domains. The method requires no parameter estimates and the convergence results do not depend on the regularity of the elliptic problem.  相似文献   

13.
We present a rather general method for proving local limit theorems, with a good rate of convergence, for sums of dependent random variables. The method is applicable when a Stein coupling can be exhibited. Our approach involves both Stein's method for distributional approximation and Stein's method for concentration. As applications, we prove local central limit theorems with rate of convergence for the number of germs with d neighbors in a germ‐grain model, and the number of degree‐d vertices in an Erd?s‐Rényi random graph. In both cases, the error rate is optimal, up to logarithmic factors.  相似文献   

14.
This paper is concerned with the stability and approximation properties of enriched meshfree and generalized finite element methods. In particular we focus on the particle-partition of unity method (PPUM) yet the presented results hold for any partition of unity based enrichment scheme. The goal of our enrichment scheme is to recover the optimal convergence rate of the uniform h-version independent of the regularity of the solution. Hence, we employ enrichment not only for modeling purposes but rather to improve the approximation properties of the numerical scheme. To this end we enrich our PPUM function space in an enrichment zone hierarchically near the singularities of the solution. This initial enrichment however can lead to a severe ill-conditioning and can compromise the stability of the discretization. To overcome the ill-conditioning of the enriched shape functions we present an appropriate local preconditioner which yields a stable and well-conditioned basis independent of the employed initial enrichment. The construction of this preconditioner is of linear complexity with respect to the number of discretization points. We obtain optimal error bounds for an enriched PPUM discretization with local preconditioning that are independent of the regularity of the solution globally and within the employed enrichment zone we observe a kind of super-convergence. The results of our numerical experiments clearly show that our enriched PPUM with local preconditioning recovers the optimal convergence rate of O(h p ) of the uniform h-version globally. For the considered model problems from linear elastic fracture mechanics we obtain an improved convergence rate of O(h p+δ ) with d 3 \frac12{\delta\geq\frac{1}{2}} for p = 1. The convergence rate of our multilevel solver is essentially the same for a purely polynomial approximation and an enriched approximation.  相似文献   

15.
Accelerated Landweber iterations for the solution of ill-posed equations   总被引:9,自引:0,他引:9  
Summary In this paper, the potentials of so-calledlinear semiiterative methods are considered for the approximate solution of linear ill-posed problems and ill conditioned matrix equations. Several efficient two-step methods are presented, most of which have been introduced earlier in the literature. Stipulating certain conditions concerning the smoothness of the solution, a notion of optimal speed of convergence may be formulated. Various direct and converse results are derived to illustrate the properties of this concept.If the problem's right hand side data are contaminated by noise, semiiterative methods may be used asregularization methods. Assuming optimal rate of convergence of the iteration for the unperturbed problem, the regularized approximations will be of order optimal accuracy.To derive these results, specific properties of polynomials are used in connection with the basic theory of solving ill-posed problems. Rather recent results onfast decreasing polynomials are applied to answer an open question of Brakhage.Numerical examples are given including a comparison to the method of conjugate gradients.This research was sponsored by the Deutsche Forschungsgemeinschaft (DFG).  相似文献   

16.
In this paper, we use the variational iteration method (VIM) for optimal control problems. First, optimal control problems are transferred to Hamilton–Jacobi–Bellman (HJB) equation as a nonlinear first order hyperbolic partial differential equation. Then, the basic VIM is applied to construct a nonlinear optimal feedback control law. By this method, the control and state variables can be approximated as a function of time. Also, the numerical value of the performance index is obtained readily. In view of the convergence of the method, some illustrative examples are presented to show the efficiency and reliability of the presented method.  相似文献   

17.
document     
This work develops asymptotically optimal controls for discrete-time singularly perturbed Markov decision processes (MDPs) having weak and strong interactions. The focus is on finite-state-space-MDP problems. The state space of the underlying Markov chain can be decomposed into a number of recurrent classes or a number of recurrent classes and a group of transient states. Using a hierarchical control approach, continuous-time limit problems that are much simpler to handle than the original ones are derived. Based on the optimal solutions for the limit problems, nearly optimal decisions for the original problems are obtained. The asymptotic optimality of such controls is proved and the rate of convergence is provided. Infinite horizon problems are considered; both discounted costs and long-run average costs are examined.  相似文献   

18.
Linear Programming, LP, problems with finite optimal value have a zero duality gap and a primal–dual strictly complementary optimal solution pair. On the other hand, there exist Semidefinite Programming, SDP, problems which have a nonzero duality gap (different primal and dual optimal values; not both infinite). The duality gap is assured to be zero if a constraint qualification, e.g., Slater’s condition (strict feasibility) holds. Measures of strict feasibility, also called distance to infeasibility, have been used in complexity analysis, and, it is known that (near) loss of strict feasibility results in numerical difficulties. In addition, there exist SDP problems which have a zero duality gap but no strict complementary primal–dual optimal solution. We refer to these problems as hard instances of SDP. The assumption of strict complementarity is essential for asymptotic superlinear and quadratic rate convergence proofs. In this paper, we introduce a procedure for generating hard instances of SDP with a specified complementarity nullity (the dimension of the common nullspace of primal–dual optimal pairs). We then show, empirically, that the complementarity nullity correlates well with the observed local convergence rate and the number of iterations required to obtain optimal solutions to a specified accuracy, i.e., we show, even when Slater’s condition holds, that the loss of strict complementarity results in numerical difficulties. We include two new measures of hardness that correlate well with the complementarity nullity.  相似文献   

19.
Summary Let Pn be a sequence of optimal control problems with fixed end times (described by ordinary differential equations, with pointwise and norm (of controls) constraints, and with general functional). Let P0 be an ? unperturbed ? problem (of the same type). In this paper theorems are obtained about the strong convergence (in some Lp) of optimal controls of Pn to some optimal control of P0, about the uniform convergence xn → x0 of states, and the property thatmin Pn min P0. As corollaries, convergence theorems for some calculus of variations problems can be derived. Weak convergence theorems of optimal controls of Pn to an optimal one of P0 were considered in[7]. A general abstract theorem about strong convergence of minimum points, generalizing a result in[5], is proved.

Indirizzo dell'autore: Istituto di Matematica, via L. B. Alberti 4 - 16132 Genova. Lavoro eseguito nell'ambito del Centro di Matematica e di Fisica Teorica del C.N.R. presso l'Università di Genova.

Entrata in Redazione il 4 maggio 1972.  相似文献   

20.
This paper describes two new harmony search (HS) meta-heuristic algorithms for engineering optimization problems with continuous design variables. The key difference between these algorithms and traditional (HS) method is in the way of adjusting bandwidth (bw). bw is very important factor for the high efficiency of the harmony search algorithms and can be potentially useful in adjusting convergence rate of algorithms to optimal solution. First algorithm, proposed harmony search (PHS), introduces a new definition of bandwidth (bw). Second algorithm, improving proposed harmony search (IPHS) employs to enhance accuracy and convergence rate of PHS algorithm. In IPHS, non-uniform mutation operation is introduced which is combination of Yang bandwidth and PHS bandwidth. Various engineering optimization problems, including mathematical function minimization problems and structural engineering optimization problems, are presented to demonstrate the effectiveness and robustness of these algorithms. In all cases, the solutions obtained using IPHS are in agreement or better than those obtained from other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号