首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We give a complete characterization of mixed unit interval graphs, the intersection graphs of closed, open, and half‐open unit intervals of the real line. This is a proper superclass of the well‐known unit interval graphs. Our result solves a problem posed by Dourado, Le, Protti, Rautenbach, and Szwarcfiter (Mixed unit interval graphs, Discrete Math 312, 3357–3363 (2012)).  相似文献   

2.
We give two structural characterizations of the class of finite intersection graphs of the open and closed real intervals of unit length. This class is a proper superclass of the well‐known unit interval graphs.  相似文献   

3.
The class of intersection graphs of unit intervals of the real line whose ends may be open or closed is a strict superclass of the well-known class of unit interval graphs. We pose a conjecture concerning characterizations of such mixed unit interval graphs, verify parts of it in general, and prove it completely for diamond-free graphs. In particular, we characterize diamond-free mixed unit interval graphs by means of an infinite family of forbidden induced subgraphs, and we show that a diamond-free graph is mixed unit interval if and only if it has intersection representations using unit intervals such that all ends of the intervals are integral.  相似文献   

4.
In this article, we obtain two new characterizations of circular‐arc bigraphs. One of them is the representation of a circular‐arc bigraph in terms of two two‐clique circular‐arc graphs while another one represents the same as a union of an interval bigraph and a Ferrers bigraph. Finally, we introduce the notions of proper and unit circular‐arc bigraphs, characterize them and show that, as in the case of circular‐arc graphs, unit circular‐arc bigraphs form a proper subclass of the class of proper circular‐arc bigraphs.  相似文献   

5.
A graph is a probe interval graph (PIG) if its vertices can be partitioned into probes and nonprobes with an interval assigned to each vertex so that vertices are adjacent if and only if their corresponding intervals overlap and at least one of them is a probe. PIGs are a generalization of interval graphs introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. PIGs have been characterized in the cycle-free case by Sheng, and other miscellaneous results are given by McMorris, Wang, and Zhang. Johnson and Spinrad give a polynomial time recognition algorithm for when the partition of vertices into probes and nonprobes is given. The complexity for the general recognition problem is not known. Here, we restrict attention to the case where all intervals have the same length, that is, we study the unit probe interval graphs and characterize the cycle-free graphs that are unit probe interval graphs via a list of forbidden induced subgraphs.  相似文献   

6.
We characterize graphs that have intersection representations using unit intervals with open or closed ends such that all ends of the intervals are integral in terms of infinitely many minimal forbidden induced subgraphs. Furthermore, we provide a linear-time algorithm that decides if a given interval graph admits such an intersection representation.  相似文献   

7.
Polarity and monopolarity are properties of graphs defined in terms of the existence of certain vertex partitions; graphs with polarity and monopolarity are respectively called polar and monopolar graphs. These two properties commonly generalize bipartite and split graphs, but are hard to recognize in general. In this article we identify two classes of graphs, triangle‐free graphs and claw‐free graphs, restricting to which provide novel impact on the complexity of the recognition problems. More precisely, we prove that recognizing polarity or monopolarity remains NP‐complete for triangle‐free graphs. We also show that for claw‐free graphs the former is NP‐complete and the latter is polynomial time solvable. This is in sharp contrast to a recent result that both polarity and monopolarity can be recognized in linear time for line graphs. Our proofs for the NP‐completeness are simple reductions. The polynomial time algorithm for recognizing the monopolarity of claw‐free graphs uses a subroutine similar to the well‐known breadth‐first search algorithm and is based on a new structural characterization of monopolar claw‐free graphs, a generalization of one for monopolar line graphs obtained earlier.  相似文献   

8.
An efficient dominating set (or perfect code) in a graph is a set of vertices the closed neighborhoods of which partition the graph's vertex set. We introduce graphs that are hereditary efficiently dominatable in that sense that every induced subgraph of the graph contains an efficient dominating set. We prove a decomposition theorem for (bull, fork, C4)‐free graphs, based on which we characterize, in terms of forbidden induced subgraphs, the class of hereditary efficiently dominatable graphs. We also give a decomposition theorem for hereditary efficiently dominatable graphs and examine some algorithmic aspects of such graphs. In particular, we give a polynomial time algorithm for finding an efficient dominating set (if one exists) in a class of graphs properly containing the class of hereditary efficiently dominatable graphs by reducing the problem to the maximum weight independent set problem in claw‐free graphs.  相似文献   

9.
《Discrete Mathematics》2023,346(2):113220
The orientation completion problem for a fixed class of oriented graphs asks whether a given partially oriented graph can be completed to an oriented graph in the class. Orientation completion problems have been studied recently for several classes of oriented graphs, including local tournaments. Local tournaments are intimately related to proper circular-arc graphs and proper interval graphs. In particular, proper interval graphs are precisely those which can be oriented as acyclic local tournaments. In this paper we determine all obstructions for acyclic local tournament orientation completions. These are in a sense minimal partially oriented graphs that cannot be completed to acyclic local tournaments. Our results imply that a polynomial time certifying algorithm exists for the acyclic local tournament orientation completion problem.  相似文献   

10.
《Journal of Graph Theory》2018,87(3):285-304
We initiate a general study of what we call orientation completion problems. For a fixed class of oriented graphs, the orientation completion problem asks whether a given partially oriented graph P can be completed to an oriented graph in by orienting the (nonoriented) edges in P. Orientation completion problems commonly generalize several existing problems including recognition of certain classes of graphs and digraphs as well as extending representations of certain geometrically representable graphs. We study orientation completion problems for various classes of oriented graphs, including k‐arc‐strong oriented graphs, k‐strong oriented graphs, quasi‐transitive‐oriented graphs, local tournaments, acyclic local tournaments, locally transitive tournaments, locally transitive local tournaments, in‐tournaments, and oriented graphs that have directed cycle factors. We show that the orientation completion problem for each of these classes is either polynomial time solvable or NP‐complete. We also show that some of the NP‐complete problems become polynomial time solvable when the input‐oriented graphs satisfy certain extra conditions. Our results imply that the representation extension problems for proper interval graphs and for proper circular arc graphs are polynomial time solvable. The latter generalizes a previous result.  相似文献   

11.
《Journal of Graph Theory》2018,87(2):239-252
A proper edge coloring of a graph G with colors is called a cyclic interval t‐coloring if for each vertex v of G the edges incident to v are colored by consecutive colors, under the condition that color 1 is considered as consecutive to color t. We prove that a bipartite graph G of even maximum degree admits a cyclic interval ‐coloring if for every vertex v the degree satisfies either or . We also prove that every Eulerian bipartite graph G with maximum degree at most eight has a cyclic interval coloring. Some results are obtained for ‐biregular graphs, that is, bipartite graphs with the vertices in one part all having degree a and the vertices in the other part all having degree b; it has been conjectured that all these have cyclic interval colorings. We show that all (4, 7)‐biregular graphs as well as all ‐biregular () graphs have cyclic interval colorings. Finally, we prove that all complete multipartite graphs admit cyclic interval colorings; this proves a conjecture of Petrosyan and Mkhitaryan.  相似文献   

12.
Matrix symmetrization and several related problems have an extensive literature, with a recurring ambiguity regarding their complexity and relation to graph isomorphism. We present a short survey of these problems to clarify their status. In particular, we recall results from the literature showing that matrix symmetrization is in fact NP‐hard; furthermore, it is equivalent with the problem of recognizing whether a hypergraph can be realized as the neighborhood hypergraph of a graph. There are several variants of the latter problem corresponding to the concepts of open, closed, or mixed neighborhoods. While all these variants are NP‐hard in general, one of them restricted to the bipartite graphs is known to be equivalent with graph isomorphism. Extending this result, we consider several other variants of the bipartite neighborhood recognition problem and show that they all are either polynomial‐time solvable, or equivalent with graph isomorphism. Also, we study uniqueness of neighborhood realizations of hypergraphs and show that, in general, for all variants of the problem, a realization may be not unique. However, we prove uniqueness in two special cases: for the open and closed neighborhood hypergraphs of the bipartite graphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 69–95, 2008  相似文献   

13.
《Journal of Graph Theory》2018,87(1):108-129
A hole is a chordless cycle with at least four vertices. A pan is a graph that consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)‐free graph can be decomposed by clique cutsets into essentially unit circular‐arc graphs. This structure theorem is the basis of our ‐time certifying algorithm for recognizing (pan, even hole)‐free graphs and for our ‐time algorithm to optimally color them. Using this structure theorem, we show that the tree‐width of a (pan, even hole)‐free graph is at most 1.5 times the clique number minus 1, and thus the chromatic number is at most 1.5 time the clique number.  相似文献   

14.
张振坤  侯亚林 《数学季刊》2009,24(2):290-297
The interval graph completion problem of a graph G includes two class problems: the profile problem and the pathwidth problem, denoted as P(G) and PW(G) respectively, where the profile problem is to find an interval supergraph with the smallest possible number of edges; the pathwidth problem is to find an interval supergraph with the smallest possible cliquesize. These two class problems have important applications to numerical algebra, VLSI-layout and algorithm graph theory respectively; And they are known to be NP-complete for general graphs. Some classes of special graphs have been investigated in the literatures. In this paper the exact solutions of the profile and the pathwidth of the complete multipartite Graph Kn1,n2,…,nr(r≥2) are determined.  相似文献   

15.
Tolerance graphs     
Tolerance graphs arise from the intersection of intervals with varying tolerances in a way that generalizes both interval graphs and permutation graphs. In this paper we prove that every tolerance graph is perfect by demonstrating that its complement is perfectly orderable. We show that a tolerance graph cannot contain a chordless cycle of length greater than or equal to 5 nor the complement of one. We also discuss the subclasses of bounded tolerance graphs, proper tolerance graphs, and unit tolerance graphs and present several possible applications and open questions.  相似文献   

16.
An orthogonal ray graph is an intersection graph of horizontal and vertical rays (half-lines) in the xy-plane. An orthogonal ray graph is a 2-directional orthogonal ray graph if all the horizontal rays extend in the positive x-direction and all the vertical rays extend in the positive y-direction. We first show that the class of orthogonal ray graphs is a proper subset of the class of unit grid intersection graphs. We next provide several characterizations of 2-directional orthogonal ray graphs. Our first characterization is based on forbidden submatrices. A characterization in terms of a vertex ordering follows immediately. Next, we show that 2-directional orthogonal ray graphs are exactly those bipartite graphs whose complements are circular arc graphs. This characterization implies polynomial-time recognition and isomorphism algorithms for 2-directional orthogonal ray graphs. It also leads to a characterization of 2-directional orthogonal ray graphs by a list of forbidden induced subgraphs. We also show a characterization of 2-directional orthogonal ray trees, which implies a linear-time algorithm to recognize such trees. Our results settle an open question of deciding whether a (0,1)-matrix can be permuted to avoid the submatrices .  相似文献   

17.
In this note, a constructive proof that the classes of proper interval graphs and unit interval graphs coincide is given, a result originally established by Fred S. Roberts. Additionally, the proof yields a linear-time and space algorithm to compute a unit interval representation, given a proper interval graph as input.  相似文献   

18.
We present a parallel algorithm for recognizing and representing a proper interval graph in time with O(m+n) processors on the CREW PRAM, where m and n are the number of edges and vertices in the graph. The algorithm uses sorting to compute a weak linear ordering of the vertices, from which an interval representation is easily obtained. It is simple, uses no complex data structures, and extends ideas from an optimal sequential algorithm for recognizing and representing a proper interval graph [X. Deng, P. Hell, J. Huang, Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs, SIAM J. Comput. 25 (2) (1996) 390-403].  相似文献   

19.
弦图扩张与最优排序   总被引:4,自引:0,他引:4  
弦图是一类特殊的完美图,以具有完美消去顺序为特征.由弦图扩张引出一系列序列性组合优化问题,沟通了图论、数值分析及最优排序等领域的若干研究课题.本文将论述我们的一些观点和研究结果.  相似文献   

20.
An edge‐coloring of a graph G with colors is called an interval t‐coloring if all colors are used, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. In 1991, Erd?s constructed a bipartite graph with 27 vertices and maximum degree 13 that has no interval coloring. Erd?s's counterexample is the smallest (in a sense of maximum degree) known bipartite graph that is not interval colorable. On the other hand, in 1992, Hansen showed that all bipartite graphs with maximum degree at most 3 have an interval coloring. In this article, we give some methods for constructing of interval non‐edge‐colorable bipartite graphs. In particular, by these methods, we construct three bipartite graphs that have no interval coloring, contain 20, 19, 21 vertices and have maximum degree 11, 12, 13, respectively. This partially answers a question that arose in [T.R. Jensen, B. Toft, Graph coloring problems, Wiley Interscience Series in Discrete Mathematics and Optimization, 1995, p. 204]. We also consider similar problems for bipartite multigraphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号