首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The effect of rotation on the onset of double diffusive convection in a horizontal couple stress fluid-saturated porous layer, which is heated and salted from below, is studied analytically using both linear and weak nonlinear stability analyses. The extended Darcy model, which includes the time derivative and Coriolis terms, has been employed in the momentum equation. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. The effect of Taylor number, couple stress parameter, solute Rayleigh number, Lewis number, Darcy–Prandtl number, and normalized porosity on the stationary, oscillatory, and finite amplitude convection is shown graphically. It is found that the rotation, couple stress parameter and solute Rayleigh number have stabilizing effect on the stationary, oscillatory, and finite amplitude convection. The Lewis number has a stabilizing effect in the case of stationary and finite amplitude modes, with a destabilizing effect in the case of oscillatory convection. The Darcy–Prandtl number and normalized porosity advances the onset of oscillatory convection. A weak nonlinear theory based on the truncated representation of Fourier series method is used to find the finite amplitude Rayleigh number and heat and mass transfer. The transient behavior of the Nusselt number and Sherwood number is investigated by solving the finite amplitude equations using Runge–Kutta method.  相似文献   

2.
The linear and weakly nonlinear stability analysis of the quiescent state in a viscoelastic fluid subject to vertical solute concentration and temperature gradients is investigated. The non-Newtonian behavior of the viscoelastic fluid is characterized using the Oldroyd model. Analytical expressions for the critical Rayleigh numbers and corresponding wave numbers for the onset of stationary or oscillatory convection subject to cross diffusion effects is determined. A stability diagram clearly demarcates non-overlapping regions of finger and diffusive instabilities. A Lorenz system is obtained in the case of the weakly nonlinear stability analysis. The effect of Dufour and Soret parameters on the heat and mass transports are determined and discussed. Due to consideration of dilute concentrations of the second diffusing component the route to chaos in binary viscoelastic fluid systems is similar to that of single-component (thermal) viscoelastic fluid systems.  相似文献   

3.
The problem of double-diffusive convection and cross-diffusion in a Maxwell fluid in a horizontal layer in porous media is re-examined using the modified Darcy–Brinkman model. The effect of Dufour and Soret parameters on the critical Darcy–Rayleigh numbers is investigated. Analytical expressions of the critical Darcy–Rayleigh numbers for the onset of stationary and oscillatory convection are derived. Numerical simulations show that the presence of Dufour and Soret parameters has a significant effect on the critical Darcy–Rayleigh number for over-stability. In the limiting case some previously published results are recovered.  相似文献   

4.
《Applied Mathematical Modelling》2014,38(9-10):2345-2352
The linear stability of triply diffusive convection in a binary Maxwell fluid saturated porous layer is investigated. Applying the normal mode method theory, the criterion for the onset of stationary and oscillatory convection is obtained. The modified Darcy–Maxwell model is used as the analysis model, this allows us to make a thorough investigation of the processes of viscoelasticity and diffusions that causes the convection to set in through oscillatory rather than stationary. The effects of Vadasz number, normalized porosity parameter, relaxation parameter, Lewis number and solute Rayleigh number on the system are presented numerically and graphically.  相似文献   

5.
For the case of solidification of a bottom cooled binary alloy, the magnetohydrodynamic stationary and oscillatory convective stability in the mushy layer is investigated analytically using normal mode linear stability analysis. In the limit of large Stefan number (St), a near–eutectic approximation with large far field temperature is considered in the present research. To ascertain the instability in the mushy layer, the strength of the superimposed magnetic field is so chosen that it corresponds to a given mush Hartmann number (Ham) of the problem. The results are presented for various values of mush Hartmann numbers in the range, 0 ≤ Ham ≤ 50. The critical Rayleigh number for stationary convection shows a linear relationship with increasing Ham. The magnetohydrodynamic effect imparts a stabilizing influence during stationary convection. In comparison to that of the stationary convective mode, the oscillatory mode appears to be critically susceptible at higher values of β (β = St/℘2 ϒ2, ℘ is the compositional ratio, ϒ = 1 + St/℘), and vice versa for lower β values. Analogous to the behavior for stationary convection, the magnetic field also offers a stabilizing effect in oscillatory convection and thus influences global stability of the mushy layer. Increasing magnetic strength shows reduction in the wavenumber and in the number of rolls formed in the mushy layer.  相似文献   

6.
We investigate linear and weakly nonlinear properties of rotating convection in a sparsely packed Porous medium. We obtain the values of Takens–Bogdanov bifurcation points and co-dimension two bifurcation points by plotting graphs of neutral curves corresponding to stationary and oscillatory convection for different values of physical parameters relevant to rotating convection in a sparsely packed porous medium near a supercritical pitchfork bifurcation. We derive a nonlinear two-dimensional Landau–Ginzburg equation with real coefficients by using Newell–Whitehead method [16]. We investigate the effect of parameter values on the stability mode and show the occurrence of secondary instabilities viz., Eckhaus and Zigzag Instabilities. We study Nusselt number contribution at the onset of stationary convection. We derive two nonlinear one-dimensional coupled Landau–Ginzburg type equations with complex coefficients near the onset of oscillatory convection at a supercritical Hopf bifurcation and discuss the stability regions of standing and travelling waves.  相似文献   

7.
This paper deals with the theoretical investigation of the effect of magnetic field dependent (MFD) viscosity on the thermal convection in a ferromagnetic fluid in the presence of dust particles. For a flat ferromagnetic fluid layer contained between two free boundaries, the exact solution is obtained using a linear stability analysis and a normal mode analysis method. For the case of stationary convection, dust particles always have a destabilizing effect, whereas the MFD viscosity has a stabilizing effect on the onset of convection. In the absence of MFD viscosity, the destabilizing effect of magnetization is depicted but in the presence of MFD viscosity, non-buoyancy magnetization may have a destabilizing or a stabilizing effect on the onset of convection. The critical wave number and critical magnetic thermal Rayleigh number for the onset of stationary convection are also determined numerically for sufficiently large values of buoyancy magnetization parameter M 1. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. It is observed that the critical magnetic thermal Rayleigh number is reduced solely because the heat capacity of clean fluid is supplemented by that of the dust particles. The principle of exchange of stabilities is found to hold true for the ferromagnetic fluid heated from below in the absence of dust particles. The oscillatory modes are introduced due to the presence of the dust particles, which were non-existent in their absence. A sufficient condition for the non-existence of overstability is also obtained.  相似文献   

8.
The problem of thermal convection is investigated for a layer of fluid when the heat flux law of Cattaneo is adopted. The boundary conditions are those appropriate to two fixed surfaces. It is shown that for small Cattaneo number the critical Rayleigh number initially increases from its classical value of 1707.765 until a critical value of the Cattaneo number is reached. For Cattaneo numbers greater than this critical value a notable Hopf bifurcation is observed with convection occurring at lower Rayleigh numbers and by oscillatory rather than stationary convection. The aspect ratio of the convection cells likewise changes.  相似文献   

9.
This paper continues the investigation of structural stability for the Brinkman equations modeling the double diffusive convection for flow in a porous medium. It supplements earlier results of Straughan and Hutter [B. Straughan, K. Hutter, A priori bounds and structural stability for double diffusive convection incorporating the Soret effect, Proc. R. Soc. Lond. Ser. A 455 (1999) 767-777].  相似文献   

10.
The onset of Marangoni convection in a non-reactive binary fluid layer in the presence of throughflow and Soret effect is determined. The bottom boundary of the fluid layer is assumed to be either conducting or insulating to temperature and solute concentration perturbations while the top boundary is free and insulating. The linear stability analysis is followed and an exact solution is obtained for the corresponding eigenvalue problem by assuming that stationary convection is exhibited at the neutral state. The contribution from the Soret effect is seen only when the throughflow is weak, but however for a wider range of upward throughflow when the bottom boundary is conducting. The instability gets advanced/delayed when the Soret parameter assumes negative/positive values. The results agree well with the existing results in the literature for some particular cases.  相似文献   

11.
The critical Rayleigh number for stability of convection in a fluid of second grade is obtained by means of the energy method. If the thermodynamic restrictions derived by Dunn and Fosdick [1] are adopted the nonlinear energy boundary is shown to be the same as that of linear theory, and the nonexistence of subcritical instabilities is deduced.  相似文献   

12.
The onset of convection in a ternary horizontal porous fluid layer, heated from below and salted from above and below, in the presence of Soret thermo-diffusive effects (in the Darcy–Boussinesq scheme) is investigated. Via a new approach (“auxiliary system method”), it is shown that do not exist subcritical instabilities and that the global nonlinear stability is guaranteed by the linear stability. The Soret stabilizing-destabilizing effects, via algebraic conditions in closed forms, are obtained also discovering symmetries and skew-symmetries hidden in the Darcy–Boussinesq equations.  相似文献   

13.
Thermal instability of a micropolar fluid layer heated from below in the presence of hall currents is investigated. Using the appropriate boundary conditions on the boundary surfaces of the fluid layer, the frequency equation is derived and then critical Rayleigh number is determined. It is found that hall current parameter has destabilizing effect on the system. For specific values of parameters, oscillatory convection in observed in the system. The behavior of Rayleigh number with wavenumber is also computed for different values of various parameters. The results of some earlier workers have been reduced as a special case from the present problem.  相似文献   

14.
The onset of laminar axisymmetric Rayleigh–Bénard convection is investigated analytically for fluid in a cylindrical container. All surfaces are considered to be solid and no-slip for the flow, whereas for the thermal boundary conditions both a perfectly conducting and an insulated side wall are considered. The governing Boussinesq equations are perturbed and an approximate solenoidal flow field and a temperature field are determined, using the assumption of separation of variables. Subsequently, a Chebysev–Galerkin spectral method is employed to reduce the equations to a system of first-order nonlinear ordinary differential equations. The approximate representation of the flow and temperature fields make it possible to perform the calculations analytically. The first critical Rayleigh number (Racr) is then calculated using local stability analysis. The resulting value of Racr compares favorably with previous numerical and experimental studies. The analytical solution presented here allows for deeper insights into the physics of this extensively studied problem to be identified.  相似文献   

15.
The problem of the effect of dust particles on the thermal convection in micropolar ferromagnetic fluid saturating a porous medium subject to a transverse uniform magnetic field has been investigated theoretically. Linear stability analysis and normal mode analysis methods are used to find an exact solution for a flat micropolar ferromagnetic fluid layer contained between two free boundaries. In case of stationary convection, the effect of various parameters like medium permeability, dust particles, non-buoyancy magnetization, coupling parameter, spin-diffusion parameter and micropolar heat conduction parameter are analyzed. For sufficiently large values of magnetic parameter M1, the critical magnetic thermal Rayleigh number for the onset of instability is determined numerically and results are depicted graphically. It is also observed that the critical magnetic thermal Rayleigh number is reduced solely because the heat capacity of clean fluid is supplemented by that of the dust particles. The principle of exchange of stabilities is found to hold true for the micropolar ferromagnetic fluid saturating a porous medium heated from below in the absence of micropolar viscous effect, microinertia and dust particles.  相似文献   

16.
Horizontal convection in a rectangular enclosure driven by a linear temperature profile along the bottom boundary is investigated numerically using a spectral-element discretization for velocity and temperature fields. A Boussinesq approximation is employed to model buoyancy. The emphasis of this study is on the scaling of mean Nusselt number and boundary layer quantities with aspect ratio and Rayleigh number.  相似文献   

17.
A nonlinear stability result for a double-diffusive magnetized ferrofluid layer rotating about a vertical axis for stress-free boundaries is derived via generalized energy method. The mathematical emphasis is on how to control the nonlinear terms caused by magnetic body and inertia forces. The result is compared with the result obtained by linear instability theory. The critical magnetic thermal Rayleigh number given by energy theory is slightly less than those given by linear theory and thus indicates the existence of subcritical instability for ferrofluids. For non-ferrofluids, it is observed that the nonlinear critical stability thermal Rayleigh number coincides with that of linear critical stability thermal Rayleigh number. For lower values of magnetic parameters, this coincidence is immediately lost. The effect of magnetic parameter, M3, solute gradient, S1, and Taylor number, TA1, on subcritical instability region have been analyzed. We also demonstrate coupling between the buoyancy and magnetic forces in the nonlinear stability analysis.  相似文献   

18.
This is the third in a series of our study of Rayleigh‐Bénard convection at large Prandtl number. Here we investigate whether stationary statistical properties of the Boussinesq system for Rayleigh‐Bénard convection at large Prandtl number are related to those of the infinite Prandtl number model for convection that is formally derived from the Boussinesq system via setting the Prandtl number to infinity. We study asymptotic behavior of stationary statistical solutions, or invariant measures, to the Boussinesq system for Rayleigh‐Bénard convection at large Prandtl number. In particular, we show that the invariant measures of the Boussinesq system for Rayleigh‐Bénard convection converge to those of the infinite Prandtl number model for convection as the Prandtl number approaches infinity. We also show that the Nusselt number for the Boussinesq system (a specific statistical property of the system) is asymptotically bounded by the Nusselt number of the infinite Prandtl number model for convection at large Prandtl number. We discover that the Nusselt numbers are saturated by ergodic invariant measures. Moreover, we derive a new upper bound on the Nusselt number for the Boussinesq system at large Prandtl number of the form which asymptotically agrees with the (optimal) upper bound on Nusselt number for the infinite Prandtl number model for convection. © 2007 Wiley Periodicals, Inc.  相似文献   

19.
Using normal mode technique it has been shown that (i) values of the anisotropy parameter are important in deciding the mode of convection in a doubly diffusive fluid saturating a porous medium. (ii) Depending on the values of the Soret and Dufour parameters, an increase in anisotropy parameter either promotes or inhibits instability, (iii) cross-diffusion induces instability even in a potentially stable set-up and (iv) for certain values of the Dufour and Soret parameters there is a discontinuity in the critical thermal Rayleigh number, which disappears if the porous medium has horizontal isotropy.  相似文献   

20.
The influence of 16 boundary conditions on linear and nonlinear stability analyses of Rayleigh–Bénard system is reported. A Stuart–Landau amplitude equation for the Rayleigh–Bénard system between stress-free, isothermal boundary conditions is derived and the procedure used in this derivation serves as guidance for constructing an appropriate Fourier–Galerkin expansion for the other 15 boundary conditions to derive a generalized Lorenz model. The influence of the boundary conditions comes within the coefficients of the generalized Lorenz model. It is shown that the obtained generalized Lorenz model is energy conserving and for certain boundary conditions it retains features of the classical Lorenz model. Further, the principle of exchange of stabilities is shown to be valid for the present problem and hence it is the steady-state, linearized version of the generalized Lorenz model which yields an analytical expression for the Rayleigh number. On minimizing this expression with respect to wave number the critical Rayleigh number at which the onset of regular convective motion occurs in the form of rolls is determined for all 16 boundary conditions. It is found that these values are in good agreement with those of previous investigations leading to the conclusion that the chosen minimal Fourier–Galerkin expansion is a valid one. Exhibition of chaotic motion in the generalized Lorenz system at the Hopf Rayleigh number is studied. The phase-space plots which indicate a clear-cut visualization of the transition from regular convective motion to chaotic motion in the generalized Lorenz system are presented. Further, existence of a developing region for chaos (mildly chaotic motion) and windows of periodicity are captured using the bifurcation diagrams. It is concluded from the phase-space plots and the bifurcation diagrams that the generalized Lorenz model for certain sets of boundary conditions retains all the features of the classical Lorenz model. Such a conclusion cannot be made by a linear stability analysis and the need thus for a nonlinear analysis is highlighted in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号