首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This is the first one of a series of papers on association of orientations, lattice polytopes, and group arrangements to graphs. The purpose is to interpret the integral and modular tension polynomials of graphs at zero and negative integers. The whole exposition is put under the framework of subgroup arrangements and the application of Ehrhart polynomials. Such a viewpoint leads to the following main results of the paper: (i) the reciprocity law for integral tension polynomials; (ii) the reciprocity law for modular tension polynomials; and (iii) a new interpretation for the value of the Tutte polynomial T(G; x, y) of a graph G at (1, 0) as the number of cut-equivalence classes of acyclic orientations on G.  相似文献   

2.
This paper presents new combinatorial proofs of two identities due to R. Stanley relating the chromatic polynomial and acyclic orientations of a graph. In addition, using elementary means, explicit formulae for the generating functions of the chromatic numbers and the number of color compatible acyclic orientations are derived. These formulae immediately show a reciprocity law concerning the generating functions.  相似文献   

3.
The odd–even invariant for graphs is the graphic version of the odd–even invariant for oriented matroids. Here, simple properties of this invariant are verified, and for certain graphs, including chordal graphs and complete bipartite graphs, its value is determined. The odd–even chromatic polynomial is introduced, its coefficients are briefly studied, and it is shown that the absolute value of this polynomial at −1 equals the odd–even invariant, in analogy with the usual chromatic polynomial and the number of acyclic orientations.  相似文献   

4.
An upper bound is given on the number of acyclic orientations of a graph, in terms of the spectrum of its Laplacian. It is shown that this improves upon the previously known bound, which depended on the degree sequence of the graph. Estimates on the new bound are provided.A lower bound on the number of acyclic orientations of a graph is given, with the help of the probabilistic method. This argument can take advantage of structural properties of the graph: it is shown how to obtain stronger bounds for small-degree graphs of girth at least five, than are possible for arbitrary graphs. A simpler proof of the known lower bound for arbitrary graphs is also obtained.Both the upper and lower bounds are shown to extend to the general problem of bounding the chromatic polynomial from above and below along the negative real axis.Partially supported by the NSF under grant CCR-9404113. Most of this research was done while the author was at the Massachusetts Institute of Technology, and was supported by the Defense Advanced Research Projects Agency under Contracts N00014-92-J-1799 and N00014-91-J-1698, the Air Force under Contract F49620-92-J-0125, and the Army under Contract DAAL-03-86-K-0171.Supported by an ONR graduate fellowship, grants NSF 8912586 CCR and AFOSR 89-0271, and an NSF postdoctoral fellowship.  相似文献   

5.
《Journal of Graph Theory》2018,88(4):606-630
Motivated by an old conjecture of P. Erdős and V. Neumann‐Lara, our aim is to investigate digraphs with uncountable dichromatic number and orientations of undirected graphs with uncountable chromatic number. A graph has uncountable chromatic number if its vertices cannot be covered by countably many independent sets, and a digraph has uncountable dichromatic number if its vertices cannot be covered by countably many acyclic sets. We prove that, consistently, there are digraphs with uncountable dichromatic number and arbitrarily large digirth; this is in surprising contrast with the undirected case: any graph with uncountable chromatic number contains a 4‐cycle. Next, we prove that several well‐known graphs (uncountable complete graphs, certain comparability graphs, and shift graphs) admit orientations with uncountable dichromatic number in ZFC. However, we show that the statement “every graph G of size and chromatic number ω1 has an orientation D with uncountable dichromatic number” is independent of ZFC. We end the article with several open problems.  相似文献   

6.
We consider the problem of sampling from the uniform distribution on the set of Eulerian orientations of subgraphs of the triangular lattice. Although Mihail and Winkler (1989) showed that this can be achieved in polynomial time for any graph, the algorithm studied here is more natural in the context of planar Eulerian graphs. We analyse the mixing time of a Markov chain on the Eulerian orientations of a planar graph which moves between orientations by reversing the edges of directed faces. Using path coupling and the comparison method we obtain a polynomial upper bound on the mixing time of this chain for any solid subgraph of the triangular lattice. By considering the conductance of the chain we show that there exist non-solid subgraphs (subgraphs with holes) for which the chain will always take an exponential amount of time to converge. Finally, we show that the problem of counting Eulerian orientations remains #P-complete when restricted to planar graphs (Mihail and Winkler had already established this for general graphs).  相似文献   

7.
《Discrete Mathematics》2023,346(2):113220
The orientation completion problem for a fixed class of oriented graphs asks whether a given partially oriented graph can be completed to an oriented graph in the class. Orientation completion problems have been studied recently for several classes of oriented graphs, including local tournaments. Local tournaments are intimately related to proper circular-arc graphs and proper interval graphs. In particular, proper interval graphs are precisely those which can be oriented as acyclic local tournaments. In this paper we determine all obstructions for acyclic local tournament orientation completions. These are in a sense minimal partially oriented graphs that cannot be completed to acyclic local tournaments. Our results imply that a polynomial time certifying algorithm exists for the acyclic local tournament orientation completion problem.  相似文献   

8.
In this short note we discuss the shellability of (nonpure) simplicial complexes in terms of acyclic orientations of the facet-ridge incidence graphs, which shows that we can decide shellability only from the facet-ridge incidences and the total number of faces the simplicial complex contains.  相似文献   

9.
The acyclic orientations of a graph are related to its chromatic polynomial, to its reliability, and to certain hyperplane arrangements. In this paper, an algorithm for listing the acyclic orientations of a graph is presented. The algorithm is shown to requireO(n) time per acyclic orientation generated. This is the most efficient algorithm known for generating acyclic orientations.  相似文献   

10.
The present paper is the first in a series of four dealing with a mapping, introduced by the present authors, from orientations to spanning trees in graphs, from regions to simplices in real hyperplane arrangements, from reorientations to bases in oriented matroids (in order of increasing generality). This mapping is actually defined for ordered oriented matroids. We call it the active orientation-to-basis mapping, in reference to an extensive use of activities, a notion depending on a linear ordering, first introduced by W.T. Tutte for spanning trees in graphs. The active mapping, which preserves activities, can be considered as a bijective generalization of a polynomial identity relating two expressions–one in terms of activities of reorientations, and the other in terms of activities of bases–of the Tutte polynomial of a graph, a hyperplane arrangement or an oriented matroid. Specializations include bijective versions of well-known enumerative results related to the counting of acyclic orientations in graphs or of regions in hyperplane arrangements. Other interesting features of the active mapping are links established between linear programming and the Tutte polynomial.We consider here the bounded case of the active mapping, where bounded corresponds to bipolar orientations in the case of graphs, and refers to bounded regions in the case of real hyperplane arrangements, or of oriented matroids. In terms of activities, this is the uniactive internal case. We introduce fully optimal bases, simply defined in terms of signs, strengthening optimal bases of linear programming. An optimal basis is associated with one flat with a maximality property, whereas a fully optimal basis is equivalent to a complete flag of flats, each with a maximality property. The main results of the paper are that a bounded region has a unique fully optimal basis, and that, up to negating all signs, fully optimal bases provide a bijection between bounded regions and uniactive internal bases. In the bounded case, up to negating all signs, the active mapping is a bijection.  相似文献   

11.
Enumeration of perfect matchings on graphs has a longstanding interest in combinatorial mathematics. In this paper, we obtain some explicit expressions of the number of perfect matchings for a type of Archimedean lattices with toroidal boundary by applying Tesler's crossing orientations to obtain some Pfaffan orientations and enumerating their Pfaffans.  相似文献   

12.
Gioan showed that the number of cycle reversing classes of totally cyclic orientations of a given graph can be calculated as an evaluation of the corresponding Tutte polynomial. We note that the concept of cycle reversing classes of orientations coincides with that of Eulerian-equivalence classes considered by Chen and Stanley, and Kochol. Based on this coincidence, we give a bijective proof of Gioan’s result. Precisely, the main result of the paper is an algorithmic bijection between the set of Eulerian-equivalence classes of totally cyclic orientations and the set of spanning trees without internally active edges.   相似文献   

13.
14.
In this paper we show that the recognition problem for C-I graphs of posets is NP-complete. On the other hand, we prove that induced subgraphs of C-I graphs are exactly complements of comparability graphs, and hence the recognition problem for induced subgraphs of C-I graphs of posets is polynomial.  相似文献   

15.
关于一般的图的完美匹配计数的问题已证实是NP-hard问题.但Pfaffian图的完美匹配计数问题(以及其它相关问题)却能够在多项式时间内解决.由此可见图的Pfaffian性的重要性.在这篇文章中,我们研究了若干种影响图的Pfaffian性的运算.  相似文献   

16.
Romeo Rizzi 《Discrete Mathematics》2006,306(13):1390-1404
We consider graphs which contain both directed and undirected edges (partially directed graphs). We show that the problem of covering the edges of such graphs with a minimum number of edge-disjoint directed paths respecting the orientations of the directed edges is polynomially solvable. We exhibit a good characterization for this problem in the form of a min-max theorem. We introduce a more general problem including weights on possible orientations of the undirected edges. We show that this more general weighted formulation is equivalent to the weighted bipartite b-factor problem. This implies the existence of a strongly polynomial algorithm for this weighted generalization of Euler's problem to partially directed graphs (compare this with the negative results for the mixed Chinese postman problem). We also provide a compact linear programming formulation for the weighted generalization that we propose.  相似文献   

17.
In this paper, we study oriented bipartite graphs. In particular, we introduce “bitransitive” graphs. Several characterizations of bitransitive bitournaments are obtained. We show that bitransitive bitounaments are equivalent to acyclic bitournaments. As applications, we characterize acyclic bitournaments with Hamiltonian paths, determine the number of non-isomorphic acyclic bitournaments of a given order, and solve the graph-isomorphism problem in linear time for acyclic bitournaments. Next, we prove the well-known Caccetta-Häggkvist Conjecture for oriented bipartite graphs in some cases for which it is unsolved, in general, for oriented graphs. We also introduce the concept of undirected as well as oriented “odd-even” graphs. We characterize bipartite graphs and acyclic oriented bipartite graphs in terms of them. In fact, we show that any bipartite graph (acyclic oriented bipartite graph) can be represented by some odd-even graph (oriented odd-even graph). We obtain some conditions for connectedness of odd-even graphs. This study of odd-even graphs and their connectedness is motivated by a special family of odd-even graphs which we call “Goldbach graphs”. We show that the famous Goldbach's conjecture is equivalent to the connectedness of Goldbach graphs. Several other number theoretic conjectures (e.g., the twin prime conjecture) are related to various parameters of Goldbach graphs, motivating us to study the nature of vertex-degrees and independent sets of these graphs. Finally, we observe Hamiltonian properties of some odd-even graphs related to Goldbach graphs for a small number of vertices.  相似文献   

18.
《Journal of Graph Theory》2018,87(3):285-304
We initiate a general study of what we call orientation completion problems. For a fixed class of oriented graphs, the orientation completion problem asks whether a given partially oriented graph P can be completed to an oriented graph in by orienting the (nonoriented) edges in P. Orientation completion problems commonly generalize several existing problems including recognition of certain classes of graphs and digraphs as well as extending representations of certain geometrically representable graphs. We study orientation completion problems for various classes of oriented graphs, including k‐arc‐strong oriented graphs, k‐strong oriented graphs, quasi‐transitive‐oriented graphs, local tournaments, acyclic local tournaments, locally transitive tournaments, locally transitive local tournaments, in‐tournaments, and oriented graphs that have directed cycle factors. We show that the orientation completion problem for each of these classes is either polynomial time solvable or NP‐complete. We also show that some of the NP‐complete problems become polynomial time solvable when the input‐oriented graphs satisfy certain extra conditions. Our results imply that the representation extension problems for proper interval graphs and for proper circular arc graphs are polynomial time solvable. The latter generalizes a previous result.  相似文献   

19.
We generalise the signed Bollobás-Riordan polynomial of S. Chmutov and I. Pak [S. Chmutov, I. Pak, The Kauffman bracket of virtual links and the Bollobás-Riordan polynomial, Mos. Math. J. 7(3) (2007), 409-418] to a multivariate signed polynomial Z and study its properties. We prove the invariance of Z under the recently defined partial duality of S. Chmutov [S. Chmutov, Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial, J. Combin. Theory, Ser. B 99(3) (2009), 617-638. arXiv:0711.3490, doi:10.1016/j.jctb.2008.09.007] and show that the duality transformation of the multivariate Tutte polynomial is a direct consequence of it.  相似文献   

20.
Eulerian posets are motivated by the posets from triangulations of spheres; semi-Eulerian posets are motivated by the posets from triangulations of manifolds. Motivated by investigation (Proc. Natl. Acad. Sci. USA 95 (1998) 9093; Adv. Appl. Math. 19 (1997) 144; J. Combin. Theory Ser. A 85 (1999) 1; Adv. Appl. Math. 21 (1998) 22) on the number of faces of triangulations of manifolds with boundary, we introduce semi-Eulerian posets with boundary in this paper, and generalize the reciprocity laws, the Dehn–Sommerville equations, and the combinatorial Alexander duality to semi-Eulerian posets with boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号