首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectral methods for graph clustering - A survey   总被引:3,自引:0,他引:3  
Graph clustering is an area in cluster analysis that looks for groups of related vertices in a graph. Due to its large applicability, several graph clustering algorithms have been proposed in the last years. A particular class of graph clustering algorithms is known as spectral clustering algorithms. These algorithms are mostly based on the eigen-decomposition of Laplacian matrices of either weighted or unweighted graphs. This survey presents different graph clustering formulations, most of which based on graph cut and partitioning problems, and describes the main spectral clustering algorithms found in literature that solve these problems.  相似文献   

2.
In data science, data are often represented by using an undirected graph where vertices represent objects and edges describe a relationship between two objects. In many applications, there can be many relations arising from different sources and/or different types of models. Clustering of multiple undirected graphs over the same set of vertices can be studied. Existing clustering methods of multiple graphs involve costly optimization and/or tensor computation. In this paper, we study block spectral clustering methods for these multiple graphs. The main contribution of this paper is to propose and construct block Laplacian matrices for clustering of multiple graphs. We present a novel variant of the Laplacian matrix called the block intra‐normalized Laplacian and prove the conditions required for zero eigenvalues in this variant. We also show that eigenvectors of the constructed block Laplacian matrix can be shown to be solutions of the relaxation of multiple graphs cut problems, and the lower and upper bounds of the optimal solutions of multiple graphs cut problems can also be established. Experimental results are given to demonstrate that the clustering accuracy and the computational time of the proposed method are better than those of tested clustering methods for multiple graphs.  相似文献   

3.
A connected graph is said to be unoriented Laplacian maximizing if the spectral radius of its unoriented Laplacian matrix attains the maximum among all connected graphs with the same number of vertices and the same number of edges. A graph is said to be threshold (maximal) if its degree sequence is not majorized by the degree sequence of any other graph (and, in addition, the graph is connected). It is proved that an unoriented Laplacian maximizing graph is maximal and also that there are precisely two unoriented Laplacian maximizing graphs of a given order and with nullity 3. Our treatment depends on the following known characterization: a graph G is threshold (maximal) if and only if for every pair of vertices u,v of G, the sets N(u)?{v},N(v)?{u}, where N(u) denotes the neighbor set of u in G, are comparable with respect to the inclusion relation (and, in addition, the graph is connected). A conjecture about graphs that maximize the unoriented Laplacian matrix among all graphs with the same number of vertices and the same number of edges is also posed.  相似文献   

4.
It is well known that the resistance distance between two arbitrary vertices in an electrical network can be obtained in terms of the eigenvalues and eigenvectors of the combinatorial Laplacian matrix associated with the network. By studying this matrix, people have proved many properties of resistance distances. But in recent years, the other kind of matrix, named the normalized Laplacian, which is consistent with the matrix in spectral geometry and random walks [Chung, F.R.K., Spectral Graph Theory, American Mathematical Society: Providence, RI, 1997], has engendered people's attention. For many people think the quantities based on this matrix may more faithfully reflect the structure and properties of a graph. In this paper, we not only show the resistance distance can be naturally expressed in terms of the normalized Laplacian eigenvalues and eigenvectors of G, but also introduce a new index which is closely related to the spectrum of the normalized Laplacian. Finally we find a non-trivial relation between the well-known Kirchhoff index and the new index.  相似文献   

5.
In this paper, we establish a sufficient condition on distance signless Laplacian spectral radius for a bipartite graph to be Hamiltonian. We also give two sufficient conditions on distance signless Laplacian spectral radius for a graph to be Hamilton-connected and traceable from every vertex, respectively. Furthermore, we obtain a sufficient condition for a graph to be Hamiltonian in terms of the distance signless Laplacian spectral radius of the complement of a graph G.  相似文献   

6.
The normalized Laplacian eigenvalues of a network play an important role in its structural and dynamical aspects associated with the network. In this paper, we consider how the normalized Laplacian spectral radius of a non-bipartite graph behaves by several graph operations. As an example of the application, the smallest normalized Laplacian spectral radius of non-bipartite unicyclic graphs with fixed order is determined.  相似文献   

7.
For a (simple) graph G, the signless Laplacian of G is the matrix A(G)+D(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex degrees of G; the reduced signless Laplacian of G is the matrix Δ(G)+B(G), where B(G) is the reduced adjacency matrix of G and Δ(G) is the diagonal matrix whose diagonal entries are the common degrees for vertices belonging to the same neighborhood equivalence class of G. A graph is said to be (degree) maximal if it is connected and its degree sequence is not majorized by the degree sequence of any other connected graph. For a maximal graph, we obtain a formula for the characteristic polynomial of its reduced signless Laplacian and use the formula to derive a localization result for its reduced signless Laplacian eigenvalues, and to compare the signless Laplacian spectral radii of two well-known maximal graphs. We also obtain a necessary condition for a maximal graph to have maximal signless Laplacian spectral radius among all connected graphs with given numbers of vertices and edges.  相似文献   

8.
The Laplacian spectrum of a graph is the eigenvalues of the associated Laplacian matrix. The quotient between the largest and second smallest Laplacian eigenvalues of a connected graph, is called the Laplacian spectral ratio. Some bounds on the Laplacian spectral ratio are considered. We improve a relation on the Laplacian spectral ratio of regular graphs. Especially, the first two smallest Laplacian spectral ratios of graphs with given order are determined. And some operations on Laplacian spectral ratio are presented.  相似文献   

9.
We generalize three approaches on graph transformations, respectively, from Stevanovi? and Ili? (2009) [16] and Tan (2011) [19]. We also generalize an approach of graph transformations on the spectral radius of adjacency matrix into the Laplacian coefficients of graphs from Li and Feng (1979) [26]. Moreover, we determine the unique tree having the third maximal Laplacian coefficients among all n-vertex trees.  相似文献   

10.
In this paper, we characterize the extremal graph having the maximal Laplacian spectral radius among the connected bipartite graphs with n vertices and k cut vertices, and describe the extremal graph having the minimal least eigenvalue of the adjacency matrices of all the connected graphs with n vertices and k cut edges. We also present lower bounds on the least eigenvalue in terms of the number of cut vertices or cut edges and upper bounds on the Laplacian spectral radius in terms of the number of cut vertices.  相似文献   

11.
** Email: aas96106{at}maths.strath.ac.uk Grindrod (2002. Phys. Rev. E, 66, 0667021–0667027) posedthe problem of reordering a range-dependent random graph andshowed that it is relevant to the analysis of data sets frombioinformatics. Reordering under a random graph hypothesis canbe regarded as an extension of clustering and fits into thegeneral area of data mining. Here, we consider a generalizationof Grindrod's model and show how an existing spectral reorderingalgorithm that has arisen in a number of areas may be interpretedfrom a maximum likelihood range-dependent random graph viewpoint.Looked at this way, the spectral algorithm, which uses eigenvectorinformation from the graph Laplacian, is found to be automaticallytuned to an exponential edge density. The connection is precisefor optimal reorderings, but is weaker when approximate reorderingsare computed via relaxation. We illustrate the performance ofthe spectral algorithm in the weighted random graph contextand give experimental evidence that it can be successful forother edge densities. We conclude by applying the algorithmto a data set from the biological literature that describescortical connectivity in the cat brain.  相似文献   

12.
Themain goal of this paper is to obtain some bounds for the normalized Laplacian energy of a connected graph. The normalized Laplacian energy of the line and para-line graphs of a graph are investigated. The relationship of the smallest and largest positive normalized Laplacian eigenvalues of graphs are also studied.  相似文献   

13.
In this paper, we give some results on Laplacian spectral radius of graphs with cut vertices, and as their applications, we also determine the unique graph with the largest Laplacian spectral radius among all unicyclic graphs with n vertices and diameter d, 3?d?n−3.  相似文献   

14.
The signless Laplacian spectral radius of a graph G is the largest eigenvalue of its signless Laplacian matrix. In this paper, the first four smallest values of the signless Laplacian spectral radius among all connected graphs with maximum clique of size greater than or equal to 2 are obtained.  相似文献   

15.
The Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph are the characteristic polynomials of its Laplacian matrix, signless Laplacian matrix and normalized Laplacian matrix, respectively. In this paper, we mainly derive six reduction procedures on the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph which can be used to construct larger Laplacian, signless Laplacian and normalized Laplacian cospectral graphs, respectively.  相似文献   

16.
A 2-edge-covering between G and H is an onto homomorphism from the vertices of G to the vertices of H so that each edge is covered twice and edges in H can be lifted back to edges in G. In this note we show how to compute the spectrum of G by computing the spectrum of two smaller graphs, namely a (modified) form of the covered graph H and another graph which we term the anti-cover. This is done for both the adjacency matrix and the normalized Laplacian. We also give an example of two anti-cover graphs which have the same normalized Laplacian, and state a generalization for directed graphs.  相似文献   

17.
Some old results about spectra of partitioned matrices due to Goddard and Schneider or Haynsworth are re-proved. A new result is given for the spectrum of a block-stochastic matrix with the property that each off-diagonal block has equal entries and each diagonal block has equal diagonal entries and equal off-diagonal entries. The result is applied to the study of the spectra of the usual graph matrices by partitioning the vertex set of the graph according to the neighborhood equivalence relation. The concept of a reduced graph matrix is introduced. The question of when n-2 is the second largest signless Laplacian eigenvalue of a connected graph of order n is treated. A recent conjecture posed by Tam, Fan and Zhou on graphs that maximize the signless Laplacian spectral radius over all (not necessarily connected) graphs with given numbers of vertices and edges is refuted. The Laplacian spectrum of a (degree) maximal graph is reconsidered.  相似文献   

18.
根据图的阶数和边数, 本文给出了图可迹的一些充分条件. 作为应用, 得到了可迹图的规范拉普拉斯谱条件.  相似文献   

19.
In this paper, we consider the following problem: of all tricyclic graphs or trees of order n with k pendant vertices (n,k fixed), which achieves the maximal signless Laplacian spectral radius?We determine the graph with the largest signless Laplacian spectral radius among all tricyclic graphs with n vertices and k pendant vertices. Then we show that the maximal signless Laplacian spectral radius among all trees of order n with k pendant vertices is obtained uniquely at Tn,k, where Tn,k is a tree obtained from a star K1,k and k paths of almost equal lengths by joining each pendant vertex to one end-vertex of one path. We also discuss the signless Laplacian spectral radius of Tn,k and give some results.  相似文献   

20.
令G是一个简单连通图,ρ(G)和q~D(G)分别为图G的邻接谱半径和距离无符号拉普拉斯谱半径.提供了图G是哈密顿连通的两个新的谱充分条件,这两个充分条件分别是以ρ(G)和q~D(G)表示的,其中G是G的补图.进一步地,还给出了以q~D(G)表示的图G是从任意一点出发都是可迹的新的谱充分条件,从而扩展和改进了文献中的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号