首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Necessary conditions are derived for optimal control problems subject to index-2 differential-algebraic equations, pure state constraints, and mixed control-state constraints. Differential-algebraic equations are composite systems of differential equations and algebraic equations, which arise frequently in practical applications. The structure of the optimal control problem under consideration is exploited and special emphasis is laid on the representation of the Lagrange multipliers resulting from the necessary conditions for infinite optimization problems.The author thanks the referees for careful reading and helpful suggestions and comments.  相似文献   

2.
A family of convex, control constrained optimal control problems that depend on a real parameter is considered. It is shown that under some regularity conditions on data the solutions of these problems, as well as the associated Lagrange multipliers are directionally differentiable with respect to parameter. The respective right-derivatives are given as the solution and the associated Lagrange multipliers for some quadratic optimal control problem. If a condition of strict complementarity type hold, then directional derivatives become continuous ones.  相似文献   

3.
《Optimization》2012,61(1):75-91
An optimal control problem for nonlinear ODEs, subject to mixed control-state and pure state constraints is considered. Sufficient conditions are formulated, under which unique normal Lagrange multipliers exist and are given by regular functions. These conditions include pointwise linear independence of gradients of f -active constraints and controllability of the linearized state equation. Under some additional assumptions, further regularity of the multipliers is shown.  相似文献   

4.
Parameter-dependent optimal control problems for nonlinear ordinary differential equations, subject to control and state constraints, are considered. Sufficient conditions are formulated under which the solutions and the associated Lagrange multipliers are locally Lipschitz continuous and directionally differentiable functions of the parameter. The directional derivatives are characterized.This research was partially supported by Grant No. 3 0256 91 01 from Komitet Bada Naukowych.  相似文献   

5.
Second-order sufficient optimality conditions (SSC) are derived for an optimal control problem subject to mixed control-state and pure state constraints of order one. The proof is based on a Hamilton-Jacobi inequality and it exploits the regularity of the control function as well as the associated Lagrange multipliers. The obtained SSC involve the strict Legendre-Clebsch condition and the solvability of an auxiliary Riccati equation. They are weakened by taking into account the strongly active constraints.  相似文献   

6.
Optimal Control of PDEs with Regularized Pointwise State Constraints   总被引:2,自引:0,他引:2  
This paper addresses the regularization of pointwise state constraints in optimal control problems. By analyzing the associated dual problem, it is shown that the regularized problems admit Lagrange multipliers in L2-spaces. Under a certain boundedness assumption, the solution of the regularized problem converges to the one of the original state constrained problem. The results of our analysis are confirmed by numerical tests. Supported by the DFG Research Center “Mathematics for key technologies” (FZT 86) in Berlin.  相似文献   

7.
8.
In Neitzel et al. (Strategies for time-dependent PDE control using an integrated modeling and simulation environment. Part one: problems without inequality constraints. Technical Report 408, Matheon, Berlin, 2007) we have shown how time-dependent optimal control for partial differential equations can be realized in a modern high-level modeling and simulation package. In this article we extend our approach to (state) constrained problems. “Pure” state constraints in a function space setting lead to non-regular Lagrange multipliers (if they exist), i.e. the Lagrange multipliers are in general Borel measures. This will be overcome by different regularization techniques. To implement inequality constraints, active set methods and barrier methods are widely in use. We show how these techniques can be realized in a modeling and simulation package. We implement a projection method based on active sets as well as a barrier method and a Moreau Yosida regularization, and compare these methods by a program that optimizes the discrete version of the given problem. Ira Neitzel’s research was supported by the DFG Schwerpunktprogramm SPP 1253. Uwe Prüfert’s research was supported by the DFG Research Center Matheon. Thomas Slawig’s research was supported by the DFG Cluster of Excellence The Future Ocean and the DFG Schwerpunktprogramm SPP 1253. Website  相似文献   

9.
《Optimization》2012,61(6):833-849
A family of linear-quadratic optimal control problems with pointwise mixed state-control constraints governed by linear elliptic partial differential equations is considered. All data depend on a vector parameter of perturbations. Lipschitz stability with respect to perturbations of the optimal control, the state and adjoint variables, and the Lagrange multipliers is established.  相似文献   

10.
We consider a family of optimal control problems for systems described by nonlinear ordinary differential equations with control appearing linearly. The cost functionals and the control constraints are convex. All data depend on a vector parameter.Using the concept of the second-order sufficient optimality conditions it is shown that the solutions of the problems, as well as the associated Lagrange multipliers, are locally Lipschitz continuous and directionally differentiable functions of the parameter.  相似文献   

11.
Various characterizations of optimal solution sets of cone-constrained convex optimization problems are given. The results are expressed in terms of subgradients and Lagrange multipliers. We establish first that the Lagrangian function of a convex program is constant on the optimal solution set. This elementary property is then used to derive various simple Lagrange multiplier-based characterizations of the solution set. For a finite-dimensional convex program with inequality constraints, the characterizations illustrate that the active constraints with positive Lagrange multipliers at an optimal solution remain active at all optimal solutions of the program. The results are applied to derive corresponding Lagrange multiplier characterizations of the solution sets of semidefinite programs and fractional programs. Specific examples are given to illustrate the nature of the results.  相似文献   

12.
A family of optimization problems in a Hilbert space depending on a vector parameter is considered. It is assumed that the problems have locally isolated local solutions. Both these solutions and the associated Lagrange multipliers are assumed to be locally Lipschitz continuous functions of the parameter. Moreover, the assumption of the type of strong second-order sufficient condition is satisfied.It is shown that the solutions are directionally differentiable functions of the parameter and the directional derivative is characterized. A second-order expansion of the optimal-value function is obtained. The abstract results are applied to state and control constrained optimal control problems for systems described by nonlinear ordinary differential equations with the control appearing linearly.  相似文献   

13.
In an optimization problem with equality constraints the optimal value function divides the state space into two parts. At a point where the objective function is less than the optimal value, a good iteration must increase the value of the objective function. Thus, a good iteration must be a balance between increasing or decreasing the objective function and decreasing a constraint violation function. This implies that at a point where the constraint violation function is large, we should construct noninferior solutions relative to points in a local search region. By definition, an accessory function is a linear combination of the objective function and a constraint violation function. We show that a way to construct an acceptable iteration, at a point where the constraint violation function is large, is to minimize an accessory function. We develop a two-phases method. In Phase I some constraints may not be approximately satisfied or the current point is not close to the solution. Iterations are generated by minimizing an accessory function. Once all the constraints are approximately satisfied, the initial values of the Lagrange multipliers are defined. A test with a merit function is used to determine whether or not the current point and the Lagrange multipliers are both close to the optimal solution. If not, Phase I is continued. If otherwise, Phase II is activated and the Newton method is used to compute the optimal solution and fast convergence is achieved.  相似文献   

14.
In this paper, sequential gradient-restoration algorithms for optimal control problems are considered, and attention is focused on the restoration phase. It is shown that the Lagrange multipliers associated with the restoration phase not only solve the auxiliary minimization problem of the restoration phase, but are also endowed with a supplementary optimality property: they minimize a special functional, quadratic in the multipliers, subject to the multiplier differential equations and boundary conditions, for given state, control, and parameter.Dedicated to L. CesariThis work was supported by a grant of the National Science Foundation.  相似文献   

15.
Laurenz Göllmann  Daniela Kern  Helmut Maurer 《PAMM》2007,7(1):1151701-1151702
We consider retarded optimal control problems with constant delays in state and control variables under mixed controlstate inequality constraints. First order necessary optimality conditions in the form of Pontryagin's minimum principle are presented and discussed as well as numerical methods based upon discretization techniques and nonlinear programming. The minimum principle for the considered problem class leads to a boundary value problem which is retarded in the state dynamics and advanced in the costate dynamics. It can be shown that the Lagrange multipliers associated with the programming problem provide a consistent discretization of the advanced adjoint equation for the delayed control problem. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We study a quadratic parabolic control problem with pointwise final state constraints. As the set of admissible states has an empty interior, the existence of Lagrange multipliers cannot be proved directly. We obtain, however some optimality conditions by expressing the fact that among a space of regular perturbations of the optimal control, the null perturbation is optimal. We show that the qualification hypothesis can be effectively checked in some examples and that the information given by the optimality conditions is useful because it allows to get some regularity results for the optimal control.  相似文献   

17.
18.
Necessary conditions in terms of a local minimum principle are derived for optimal control problems subject to index-2 differential-algebraic equations, pure state constraints, and mixed control-state constraints. Differential-algebraic equations are composite systems of differential equations and algebraic equations, which arise frequently in practical applications. The local minimum principle is based on the necessary optimality conditions for general infinite optimization problems. The special structure of the optimal control problem under consideration is exploited and allows us to obtain more regular representations for the multipliers involved. An additional Mangasarian-Fromowitz-like constraint qualification for the optimal control problem ensures the regularity of a local minimum. An illustrative example completes the article.The author thanks the referees for careful reading and helpful suggestions and comments.  相似文献   

19.
A family of optimal control problems for discrete systems that depend on a real parameter is considered. The problems are strongly convex and subject to state and control constraints. Some regularity conditions are imposed on the constraints.The control problems are reformulated as mathematical programming problems. It is shown that both the primal and dual optimal variables for these problems are right-differentiable functions of a parameter. The right-derivatives are characterized as solutions to auxiliary quadratic control problems. Conditions of continuous differentiability are discussed, and some estimates of the rate of convergence of the difference quotients to the respective derivatives are given.  相似文献   

20.
In this paper state constrained optimal control problems governed by parabolic evolution equations are studied. Our purpose is to obtain a (first-order) decoupled optimality system (that ensures the Lagrange multipliers existence). In a first step we are led to Slater-like assumptions and we are then allowed to extend the application field of the decoupled system we obtain. With a weaker assumption the existence of Lagrange multipliers (that are measures) for nonqualified problems may be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号