首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n,k, it is proved that if 3?k?n-3, then Hn,k, the graph obtained from the star K1,n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n+k edges.  相似文献   

2.
For a (simple) graph G, the signless Laplacian of G is the matrix A(G)+D(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex degrees of G; the reduced signless Laplacian of G is the matrix Δ(G)+B(G), where B(G) is the reduced adjacency matrix of G and Δ(G) is the diagonal matrix whose diagonal entries are the common degrees for vertices belonging to the same neighborhood equivalence class of G. A graph is said to be (degree) maximal if it is connected and its degree sequence is not majorized by the degree sequence of any other connected graph. For a maximal graph, we obtain a formula for the characteristic polynomial of its reduced signless Laplacian and use the formula to derive a localization result for its reduced signless Laplacian eigenvalues, and to compare the signless Laplacian spectral radii of two well-known maximal graphs. We also obtain a necessary condition for a maximal graph to have maximal signless Laplacian spectral radius among all connected graphs with given numbers of vertices and edges.  相似文献   

3.
Let H be a simple graph with n vertices and G be a sequence of n rooted graphs G1,G2,…,Gn. Godsil and McKay [C.D. Godsil, B.D. McKay, A new graph product and its spectrum, Bull. Austral. Math. Soc. 18 (1978) 21-28] defined the rooted product H(G), of H by G by identifying the root vertex of Gi with the ith vertex of H, and determined the characteristic polynomial of H(G). In this paper we prove a general result on the determinants of some special matrices and, as a corollary, determine the characteristic polynomials of adjacency and Laplacian matrices of H(G).Rojo and Soto [O. Rojo, R. Soto, The spectra of the adjacency matrix and Laplacian matrix for some balanced trees, Linear Algebra Appl. 403 (2005) 97-117] computed the characteristic polynomials and the spectrum of adjacency and Laplacian matrices of a class of balanced trees. As an application of our results, we obtain their conclusions by a simple method.  相似文献   

4.
Through a succession of results, it is known that if the graph of an Hermitian matrix A is a tree and if for some index j, λσ(A)∩σ(A(j)), then there is an index i such that the multiplicity of λ in σ(A(i)) is one more than that in A. We exhibit a converse to this result by showing that it is generally true only for trees. In particular, it is shown that the minimum rank of a positive semidefinite matrix with a given graph G is ?n-2 when G is not a tree. This raises the question of how the minimum rank of a positive semidefinite matrix depends upon the graph in general.  相似文献   

5.
Let A(G) be the adjacency matrix of G. The characteristic polynomial of the adjacency matrix A is called the characteristic polynomial of the graph G and is denoted by φ(G, λ) or simply φ(G). The spectrum of G consists of the roots (together with their multiplicities) λ 1(G) ? λ 2(G) ? … ? λ n (G) of the equation φ(G, λ) = 0. The largest root λ 1(G) is referred to as the spectral radius of G. A ?-shape is a tree with exactly two of its vertices having maximal degree 4. We will denote by G(l 1, l 2, … l 7) (l 1 ? 0, l i ? 1, i = 2, 3, …, 7) a ?-shape tree such that $G\left( {l_1 ,l_2 , \ldots l_7 } \right) - u - v = P_{l_1 } \cup P_{l_2 } \cup \ldots P_{l_7 }$ , where u and v are the vertices of degree 4. In this paper we prove that ${{3\sqrt 2 } \mathord{\left/ {\vphantom {{3\sqrt 2 } 2}} \right. \kern-0em} 2} < \lambda _1 \left( {G\left( {l_1 ,l_2 , \ldots l_7 } \right)} \right) < {5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2}$ .  相似文献   

6.
Let A(Pn) be the adjacency matrix of the path on n vertices. Suppose that r(λ) is a polynomial of degree less than n, and consider the matrix M = r(A>/(Pn)). We determine all polynomials for which M is the adjacency matrix of a graph.  相似文献   

7.
For a given graph G with (0, 1)-adjacency matrix AG, the generalized characteristic polynomial of G is defined to be ?G=?G(λ,t)=det(λI-(AG-tDG)), where I is the identity matrix and DG is the diagonal degree matrix of G. In this paper, we are mainly concerned with the problem of characterizing a given graph G by its generalized characteristic polynomial ?G. We show that graphs with the same generalized characteristic polynomials have the same degree sequence, based on which, a unified approach is proposed to show that some families of graphs are characterized by ?G. We also provide a method for constructing graphs with the same generalized characteristic polynomial, by using GM-switching.  相似文献   

8.
Completions of partial elliptic matrices are studied. Given an undirected graph G, it is shown that every partial elliptic matrix with graph G can be completed to an elliptic matrix if and only if the maximal cliques of G are pairwise disjoint. Further, given a partial elliptic matrix A with undirected graph G, it is proved that if G is chordal and each specified principal submatrix defined by a pair of intersecting maximal cliques is nonsingular, then A can be completed to an elliptic matrix. Conversely, if G is nonchordal or if the regularity condition is relaxed, it is shown that there exist partial elliptic matrices which are not completable to an elliptic matrix. In the process we obtain several results concerning chordal graphs that may be of independent interest.  相似文献   

9.
Let G be a graph, A(G) its adjacency matrix. We prove that, if the least eigenvalue of A(G) exceeds -1 ? √2 and every vertex of G has large valence, then the least eigenvalue is at least -2 and G is a generalized line graph.  相似文献   

10.
The distance energy of a graph G is a recently developed energy-type invariant, defined as the sum of absolute values of the eigenvalues of the distance matrix of G. There was a vast research for the pairs and families of non-cospectral graphs having equal distance energy, and most of these constructions were based on the join of graphs. A graph is called circulant if it is Cayley graph on the circulant group, i.e. its adjacency matrix is circulant. A graph is called integral if all eigenvalues of its adjacency matrix are integers. Integral circulant graphs play an important role in modeling quantum spin networks supporting the perfect state transfer. In this paper, we characterize the distance spectra of integral circulant graphs and prove that these graphs have integral eigenvalues of distance matrix D. Furthermore, we calculate the distance spectra and distance energy of unitary Cayley graphs. In conclusion, we present two families of pairs (G1,G2) of integral circulant graphs with equal distance energy - in the first family G1 is subgraph of G2, while in the second family the diameter of both graphs is three.  相似文献   

11.
Edge-distance-regularity is a concept recently introduced by the authors which is similar to that of distance-regularity, but now the graph is seen from each of its edges instead of from its vertices. More precisely, a graph Γ with adjacency matrix A is edge-distance-regular when it is distance-regular around each of its edges and with the same intersection numbers for any edge taken as a root. In this paper we study this concept, give some of its properties, such as the regularity of Γ, and derive some characterizations. In particular, it is shown that a graph is edge-distance-regular if and only if its k-incidence matrix is a polynomial of degree k in A multiplied by the (standard) incidence matrix. Also, the analogue of the spectral excess theorem for distance-regular graphs is proved, so giving a quasi-spectral characterization of edge-distance-regularity. Finally, it is shown that every nonbipartite graph which is both distance-regular and edge-distance-regular is a generalized odd graph.  相似文献   

12.
For a graph A and a positive integer n, let nA denote the union of n disjoint copies of A; similarly, the union of ?0 disjoint copies of A is referred to as ?0A. It is shown that there exist (connected) graphs A and G such that nA is a minor of G for all n??, but ?0A is not a minor of G. This supplements previous examples showing that analogous statements are true if, instead of minors, isomorphic embeddings or topological minors are considered. The construction of A and G is based on the fact that there exist (infinite) graphs G1, G2,… such that Gi is not a minor of Gj for all ij. In contrast to previous examples concerning isomorphic embeddings and topological minors, the graphs A and G presented here are not locally finite. The following conjecture is suggested: for each locally finite connected graph A and each graph G, if nA is a minor of G for all n ? ?, then ?0A is a minor of G, too. If true, this would be a far‐reaching generalization of a classical result of R. Halin on families of disjoint one‐way infinite paths in graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 222–229, 2002; DOI 10.1002/jgt.10016  相似文献   

13.
The matrix A = (aij) ∈ Sn is said to lie on a strict undirected graph G if aij = 0 (i ≠ j) whenever (ij) is not in E(G). If S is skew-symmetric, the isospectral flow maintains the spectrum of A. We consider isospectral flows that maintain a matrix A(t) on a given graph G. We review known results for a graph G that is a (generalised) path, and construct isospectral flows for a (generalised) ring, and a star, and show how a flow may be constructed for a general graph. The analysis may be applied to the isospectral problem for a lumped-mass finite element model of an undamped vibrating system. In that context, it is important that the flow maintain other properties such as irreducibility or positivity, and we discuss whether they are maintained.  相似文献   

14.
《Discrete Mathematics》2002,231(1-3):325-330
If G is a graph of order n, independent domination number i and matching number α0, then i+α0n. We characterize all graphs for which equality holds in this inequality and show that this class can be recognized in polynomial time.  相似文献   

15.
The first section surveys recent results on the permanental polynomial of a square matrix A, i.e., per(xIA). The second section concerns the permanental polynomial of the adjacency matrix of a graph. The final section is an introduction to the permanental polynomial of the Laplacian matrix of a graph. An appendix lists some of these latter polynomials.  相似文献   

16.
Let A be a Hermitian matrix whose graph is G (i.e. there is an edge between the vertices i and j in G if and only if the (i,j) entry of A is non-zero). Let λ be an eigenvalue of A with multiplicity mA(λ). An edge e=ij is said to be Parter (resp., neutral, downer) for λ,A if mA(λ)−mAe(λ) is negative (resp., 0, positive ), where Ae is the matrix resulting from making the (i,j) and (j,i) entries of A zero. For a tree T with adjacency matrix A a subset S of the edge set of G is called an edge star set for an eigenvalue λ of A, if |S|=mA(λ) and AS has no eigenvalue λ. In this paper the existence of downer edges and edge star sets for non-zero eigenvalues of the adjacency matrix of a tree is proved. We prove that neutral edges always exist for eigenvalues of multiplicity more than 1. It is also proved that an edge e=uv is a downer edge for λ,A if and only if u and v are both downer vertices for λ,A; and e=uv is a neutral edge if u and v are neutral vertices. Among other results, it is shown that any edge star set for each eigenvalue of a tree is a matching.  相似文献   

17.
It is known that if G is a graph with minimum degree δ at least d+1, then G has a cycle of length 2 mod d. We show that if G is also bipartite, then G has a cycle of length 2 mod 2d. Both these bounds are tight in terms of minimum degree. However, we show that if G is a graph with δd and had neither Kd nor Kd,d as an induced subgraph, then G has a cycle of length 2 mod d. If G is also bipartite, then G has a cycle of length 2 mod 2d. If G is a 2-connected graph with δd and is not congruent to Kd nor Kd,d' (for d' ≥ d) then G has a cycle of length 2 mod d. If G is also bipartite, then G has a cycle of length 2 mod 2d.  相似文献   

18.
Let G=(V,E) be a simple, undirected graph of order n and size m with vertex set V, edge set E, adjacency matrix A and vertex degrees Δ=d1d2≥?≥dn=δ. The average degree of the neighbor of vertex vi is . Let D be the diagonal matrix of degrees of G. Then L(G)=D(G)−A(G) is the Laplacian matrix of G and Q(G)=D(G)+A(G) the signless Laplacian matrix of G. Let μ1(G) denote the index of L(G) and q1(G) the index of Q(G). We survey upper bounds on μ1(G) and q1(G) given in terms of the di and mi, as well as the numbers of common neighbors of pairs of vertices. It is well known that μ1(G)≤q1(G). We show that many but not all upper bounds on μ1(G) are still valid for q1(G).  相似文献   

19.
If L(G) is the line graph of G, and A(L(G)), the adjacency matrix of L(G), acts on a vector x, this vector may be thought of as an integral chain of G. The eigenspace of L(G) determines a matroid for G. For the eigenvalue ?2, this matroid has a geometric interpretation, and from this we obtain all eigenvectors corresponding to this eigenvalue. Matroids are normally considered over integral domains, and the results for eigenvectors are generalized to a geometric interpretation for all integral domains. These results are applied to the ring of complex numbers, and strict bounds for the least eigenvalue of a line graph are obtained.  相似文献   

20.
Let G be a simple connected graph with n vertices and m edges. Denote the degree of vertex vi by d(vi). The matrix Q(G)=D(G)+A(G) is called the signless Laplacian of G, where D(G)=diag(d(v1),d(v2),…,d(vn)) and A(G) denote the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let q1(G) be the largest eigenvalue of Q(G). In this paper, we first present two sharp upper bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G and give a new proving method on another sharp upper bound for q1(G). Then we present three sharp lower bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G. Moreover, we determine all extremal graphs which attain these sharp bounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号