首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online.  相似文献   

2.
A threshold stochastic volatility (SV) model is used for capturing time-varying volatilities and nonlinearity. Two adaptive Markov chain Monte Carlo (MCMC) methods of model selection are designed for the selection of threshold variables for this family of SV models. The first method is the direct estimation which approximates the model posterior probabilities of competing models. Using parallel MCMC sampling to estimate these probabilities, the best threshold variable is selected with the highest posterior model probability. The second method is to use the deviance information criterion to compare among these competing models and select the best one. Simulation results lead us to conclude that for large samples the posterior model probability approximation method can give an accurate approximation of the posterior probability in Bayesian model selection. The method delivers a powerful and sharp model selection tool. An empirical study of five Asian stock markets provides strong support for the threshold variable which is formulated as a weighted average of important variables.  相似文献   

3.
It is increasingly common to be faced with longitudinal or multi-level data sets that have large numbers of predictors and/or a large sample size. Current methods of fitting and inference for mixed effects models tend to perform poorly in such settings. When there are many variables, it is appealing to allow uncertainty in subset selection and to obtain a sparse characterization of the data. Bayesian methods are available to address these goals using Markov chain Monte Carlo (MCMC), but MCMC is very computationally expensive and can be infeasible in large p and/or large n problems. As a fast approximate Bayes solution, we recommend a novel approximation to the posterior relying on variational methods. Variational methods are used to approximate the posterior of the parameters in a decomposition of the variance components, with priors chosen to obtain a sparse solution that allows selection of random effects. The method is evaluated through a simulation study, and applied to an epidemiological application.  相似文献   

4.
Mixtures of linear mixed models (MLMMs) are useful for clustering grouped data and can be estimated by likelihood maximization through the Expectation–Maximization algorithm. A suitable number of components is then determined conventionally by comparing different mixture models using penalized log-likelihood criteria such as Bayesian information criterion. We propose fitting MLMMs with variational methods, which can perform parameter estimation and model selection simultaneously. We describe a variational approximation for MLMMs where the variational lower bound is in closed form, allowing for fast evaluation and develop a novel variational greedy algorithm for model selection and learning of the mixture components. This approach handles algorithm initialization and returns a plausible number of mixture components automatically. In cases of weak identifiability of certain model parameters, we use hierarchical centering to reparameterize the model and show empirically that there is a gain in efficiency in variational algorithms similar to that in Markov chain Monte Carlo (MCMC) algorithms. Related to this, we prove that the approximate rate of convergence of variational algorithms by Gaussian approximation is equal to that of the corresponding Gibbs sampler, which suggests that reparameterizations can lead to improved convergence in variational algorithms just as in MCMC algorithms. Supplementary materials for the article are available online.  相似文献   

5.
Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the “factor slice sampler,” a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. This article has online supplementary materials.  相似文献   

6.
Implementations of the Monte Carlo EM Algorithm   总被引:1,自引:0,他引:1  
The Monte Carlo EM (MCEM) algorithm is a modification of the EM algorithm where the expectation in the E-step is computed numerically through Monte Carlo simulations. The most exible and generally applicable approach to obtaining a Monte Carlo sample in each iteration of an MCEM algorithm is through Markov chain Monte Carlo (MCMC) routines such as the Gibbs and Metropolis–Hastings samplers. Although MCMC estimation presents a tractable solution to problems where the E-step is not available in closed form, two issues arise when implementing this MCEM routine: (1) how do we minimize the computational cost in obtaining an MCMC sample? and (2) how do we choose the Monte Carlo sample size? We address the first question through an application of importance sampling whereby samples drawn during previous EM iterations are recycled rather than running an MCMC sampler each MCEM iteration. The second question is addressed through an application of regenerative simulation. We obtain approximate independent and identical samples by subsampling the generated MCMC sample during different renewal periods. Standard central limit theorems may thus be used to gauge Monte Carlo error. In particular, we apply an automated rule for increasing the Monte Carlo sample size when the Monte Carlo error overwhelms the EM estimate at any given iteration. We illustrate our MCEM algorithm through analyses of two datasets fit by generalized linear mixed models. As a part of these applications, we demonstrate the improvement in computational cost and efficiency of our routine over alternative MCEM strategies.  相似文献   

7.
We propose a parsimonious extension of the classical latent class model to cluster categorical data by relaxing the conditional independence assumption. Under this new mixture model, named conditional modes model (CMM), variables are grouped into conditionally independent blocks. Each block follows a parsimonious multinomial distribution where the few free parameters model the probabilities of the most likely levels, while the remaining probability mass is uniformly spread over the other levels of the block. Thus, when the conditional independence assumption holds, this model defines parsimonious versions of the standard latent class model. Moreover, when this assumption is violated, the proposed model brings out the main intra-class dependencies between variables, summarizing thus each class with relatively few characteristic levels. The model selection is carried out by an hybrid MCMC algorithm that does not require preliminary parameter estimation. Then, the maximum likelihood estimation is performed via an EM algorithm only for the best model. The model properties are illustrated on simulated data and on three real data sets by using the associated R package CoModes. The results show that this model allows to reduce biases involved by the conditional independence assumption while providing meaningful parameters.  相似文献   

8.
A hierarchical model is developed for the joint mortality analysis of pension scheme datasets. The proposed model allows for a rigorous statistical treatment of missing data. While our approach works for any missing data pattern, we are particularly interested in a scenario where some covariates are observed for members of one pension scheme but not the other. Therefore, our approach allows for the joint modelling of datasets which contain different information about individual lives. The proposed model generalizes the specification of parametric models when accounting for covariates. We consider parameter uncertainty using Bayesian techniques. Model parametrization is analysed in order to obtain an efficient MCMC sampler, and address model selection. The inferential framework described here accommodates any missing-data pattern, and turns out to be useful to analyse statistical relationships among covariates. Finally, we assess the financial impact of using the covariates, and of the optimal use of the whole available sample when combining data from different mortality experiences.  相似文献   

9.
We propose a two-component graphical chain model, the discrete regression distribution, where a set of discrete random variables is modeled as a response to a set of categorical and continuous covariates. The proposed model is useful for modeling a set of discrete variables measured at multiple sites along with a set of continuous and/or discrete covariates. The proposed model allows for joint examination of the dependence structure of the discrete response and observed covariates and also accommodates site-to-site variability. We develop the graphical model properties and theoretical justifications of this model. Our model has several advantages over the traditional logistic normal model used to analyze similar compositional data, including site-specific random effect terms and the incorporation of discrete and continuous covariates.  相似文献   

10.
We investigate the class of σ-stable Poisson–Kingman random probability measures (RPMs) in the context of Bayesian nonparametric mixture modeling. This is a large class of discrete RPMs, which encompasses most of the popular discrete RPMs used in Bayesian nonparametrics, such as the Dirichlet process, Pitman–Yor process, the normalized inverse Gaussian process, and the normalized generalized Gamma process. We show how certain sampling properties and marginal characterizations of σ-stable Poisson–Kingman RPMs can be usefully exploited for devising a Markov chain Monte Carlo (MCMC) algorithm for performing posterior inference with a Bayesian nonparametric mixture model. Specifically, we introduce a novel and efficient MCMC sampling scheme in an augmented space that has a small number of auxiliary variables per iteration. We apply our sampling scheme to a density estimation and clustering tasks with unidimensional and multidimensional datasets, and compare it against competing MCMC sampling schemes. Supplementary materials for this article are available online.  相似文献   

11.
Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π1, is used to estimate an expectation with respect to another, π. The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain Monte Carlo (MCMC) context. Indeed, if the random sample from π1 is replaced by a Harris ergodic Markov chain with invariant density π1, then the resulting estimator remains strongly consistent. There is a price to be paid, however, as the computation of standard errors becomes more complicated. First, the two simple moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently. In this article, we explain how to use regenerative simulation to overcome these problems. Actually, we consider a more general setup, where we assume that Markov chain samples from several probability densities, π1, …, πk, are available. We construct multiple-chain importance sampling estimators for which we obtain a CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative process, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two applications in Bayesian sensitivity analysis. The first concerns one-way random effect models under different priors. The second involves Bayesian variable selection in linear regression, and for this application, importance sampling based on multiple chains enables an empirical Bayes approach to variable selection.  相似文献   

12.
Gaussian graphical models (GGMs) are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of GGMs extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous subgroups. In this article, we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable GGMs. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo (MCMC) algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the MCMC algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which MCMC algorithms are too slow to be practically useful.  相似文献   

13.
The evolution of DNA sequences can be described by discrete state continuous time Markov processes on a phylogenetic tree. We consider neighbor-dependent evolutionary models where the instantaneous rate of substitution at a site depends on the states of the neighboring sites. Neighbor-dependent substitution models are analytically intractable and must be analyzed using either approximate or simulation-based methods. We describe statistical inference of neighbor-dependent models using a Markov chain Monte Carlo expectation maximization (MCMC-EM) algorithm. In the MCMC-EM algorithm, the high-dimensional integrals required in the EM algorithm are estimated using MCMC sampling. The MCMC sampler requires simulation of sample paths from a continuous time Markov process, conditional on the beginning and ending states and the paths of the neighboring sites. An exact path sampling algorithm is developed for this purpose.  相似文献   

14.
This paper discusses practical Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma laws. Estimation is based on a parameterization which is derived from the Rosiński representation, and has the advantage of being a non-centered parameterization. The parameterization is based on a marked point process, living on the positive real line, with uniformly distributed marks. We define a Markov chain Monte Carlo (MCMC) scheme which enables multiple updates of the latent point process, and generalizes single updating algorithm used earlier. At each MCMC draw more than one point is added or deleted from the latent point process. This is particularly useful for high intensity processes. Furthermore, the article deals with superposition models, where it discuss how the identifiability problem inherent in the superposition model may be avoided by the use of a Markov prior. Finally, applications to simulated data as well as exchange rate data are discussed.  相似文献   

15.
Label switching is a well-known problem occurring in MCMC outputs in Bayesian mixture modeling. In this article we propose a formal solution to this problem by considering the space of the artificial allocation variables. We show that there exist certain subsets of the allocation space leading to a class of nonsymmetric distributions that have the same support with the symmetric posterior distribution and can reproduce it by simply permuting the labels. Moreover, we select one of these distributions as a solution to the label switching problem using the simple matching distance between the artificial allocation variables. The proposed algorithm can be used in any mixture model and its computational cost depends on the length of the simulated chain but not on the parameter space dimension. Real and simulated data examples are provided in both univariate and multivariate settings. Supplemental material for this article is available online.  相似文献   

16.
分位数变系数模型是一种稳健的非参数建模方法.使用变系数模型分析数据时,一个自然的问题是如何同时选择重要变量和从重要变量中识别常数效应变量.本文基于分位数方法研究具有稳健和有效性的估计和变量选择程序.利用局部光滑和自适应组变量选择方法,并对分位数损失函数施加双惩罚,我们获得了惩罚估计.通过BIC准则合适地选择调节参数,提出的变量选择方法具有oracle理论性质,并通过模拟研究和脂肪实例数据分析来说明新方法的有用性.数值结果表明,在不需要知道关于变量和误差分布的任何信息前提下,本文提出的方法能够识别不重要变量同时能区分出常数效应变量.  相似文献   

17.
What does regressing Y on X versus regressing X on Y have to do with Markov chain Monte Carlo (MCMC)? It turns out that many strategies for speeding up data augmentation (DA) type algorithms can be understood as fostering independence or “de-correlation” between a regression function and the corresponding residual, thereby reducing or even eliminating dependence among MCMC iterates. There are two general classes of algorithms, those corresponding to regressing parameters on augmented data/auxiliary variables and those that operate the other way around. The interweaving strategy of Yu and Meng provides a general recipe to automatically take advantage of both, and it is the existence of two different types of residuals that makes the interweaving strategy seemingly magical in some cases and promising in general. The concept of residuals—which depends on actual data—also highlights the potential for substantial improvements when DA schemes are allowed to depend on the observed data. At the same time, there is an intriguing phase transition type of phenomenon regarding choosing (partially) residual augmentation schemes, reminding us once more of the prevailing issue of trade-off between robustness and efficiency. This article reports on these latest theoretical investigations (using a class of normal/independence models) and empirical findings (using a posterior sampling for a probit regression) in the search for effective residual augmentations—and ultimately more MCMC algorithms—that meet the 3-S criterion: simple, stable, and speedy. Supplementary materials for the article are available online.  相似文献   

18.
Generalized linear mixed effects models (GLMM) provide useful tools for correlated and/or over-dispersed non-Gaussian data. This article considers generalized nonparametric mixed effects models (GNMM), which relax the rigid linear assumption on the conditional predictor in a GLMM. We use smoothing splines to model fixed effects. The random effects are general and may also contain stochastic processes corresponding to smoothing splines. We show how to construct smoothing spline ANOVA (SS ANOVA) decompositions for the predictor function. Components in a SS ANOVA decomposition have nice interpretations as main effects and interactions. Experimental design considerations help determine which components are fixed or random. We estimate all parameters and spline functions using stochastic approximation with Markov chain Monte Carlo (MCMC). As iteration increases we increase the MCMC sample size and decrease the step-size of the parameter update. This approach guarantees convergence of the estimates to the expected fixed points. We evaluate our methods through a simulation study.  相似文献   

19.
This article considers Markov chain computational methods for incorporating uncertainty about the dimension of a parameter when performing inference within a Bayesian setting. A general class of methods is proposed for performing such computations, based upon a product space representation of the problem which is similar to that of Carlin and Chib. It is shown that all of the existing algorithms for incorporation of model uncertainty into Markov chain Monte Carlo (MCMC) can be derived as special cases of this general class of methods. In particular, we show that the popular reversible jump method is obtained when a special form of Metropolis–Hastings (M–H) algorithm is applied to the product space. Furthermore, the Gibbs sampling method and the variable selection method are shown to derive straightforwardly from the general framework. We believe that these new relationships between methods, which were until now seen as diverse procedures, are an important aid to the understanding of MCMC model selection procedures and may assist in the future development of improved procedures. Our discussion also sheds some light upon the important issues of “pseudo-prior” selection in the case of the Carlin and Chib sampler and choice of proposal distribution in the case of reversible jump. Finally, we propose efficient reversible jump proposal schemes that take advantage of any analytic structure that may be present in the model. These proposal schemes are compared with a standard reversible jump scheme for the problem of model order uncertainty in autoregressive time series, demonstrating the improvements which can be achieved through careful choice of proposals.  相似文献   

20.
Abstract

In this article we discuss the problem of assessing the performance of Markov chain Monte Carlo (MCMC) algorithms on the basis of simulation output. In essence, we extend the original ideas of Gelman and Rubin and, more recently, Brooks and Gelman, to problems where we are able to split the variation inherent within the MCMC simulation output into two distinct groups. We show how such a diagnostic may be useful in assessing the performance of MCMC samplers addressing model choice problems, such as the reversible jump MCMC algorithm. In the model choice context, we show how the reversible jump MCMC simulation output for parameters that retain a coherent interpretation throughout the simulation, can be used to assess convergence. By considering various decompositions of the sampling variance of this parameter, we can assess the performance of our MCMC sampler in terms of its mixing properties both within and between models and we illustrate our approach in both the graphical Gaussian models and normal mixtures context. Finally, we provide an example of the application of our diagnostic to the assessment of the influence of different starting values on MCMC simulation output, thereby illustrating the wider utility of our method beyond the Bayesian model choice and reversible jump MCMC context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号