首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online.  相似文献   

2.
In this article, we propose an improvement on the sequential updating and greedy search (SUGS) algorithm for fast fitting of Dirichlet process mixture models. The SUGS algorithm provides a means for very fast approximate Bayesian inference for mixture data which is particularly of use when datasets are so large that many standard Markov chain Monte Carlo (MCMC) algorithms cannot be applied efficiently, or take a prohibitively long time to converge. In particular, these ideas are used to initially interrogate the data, and to refine models such that one can potentially apply exact data analysis later on. SUGS relies upon sequentially allocating data to clusters and proceeding with an update of the posterior on the subsequent allocations and parameters which assumes this allocation is correct. Our modification softens this approach, by providing a probability distribution over allocations, with a similar computational cost; this approach has an interpretation as a variational Bayes procedure and hence we term it variational SUGS (VSUGS). It is shown in simulated examples that VSUGS can outperform, in terms of density estimation and classification, a version of the SUGS algorithm in many scenarios. In addition, we present a data analysis for flow cytometry data, and SNP data via a three-class Dirichlet process mixture model, illustrating the apparent improvement over the original SUGS algorithm.  相似文献   

3.
Gaussian graphical models (GGMs) are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of GGMs extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous subgroups. In this article, we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable GGMs. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo (MCMC) algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the MCMC algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which MCMC algorithms are too slow to be practically useful.  相似文献   

4.
This paper describes the package sppmix for the statistical environment R. The sppmix package implements classes and methods for modeling spatial point patterns using inhomogeneous Poisson point processes, where the intensity surface is assumed to be a multiple of a finite additive mixture of normal components and the number of components is a finite, fixed or random integer. Extensions to the marked inhomogeneous Poisson point processes case are also presented. We provide an extensive suite of R functions that can be used to simulate, visualize and model point patterns, estimate the parameters of the models, assess convergence of the algorithms and perform model selection and checking in the proposed modeling context. In addition, several approaches have been implemented in order to handle the standard label switching issue which arises in any modeling approach involving mixture models. We adapt a hierarchical Bayesian framework in order to model the intensity surfaces and have implemented two major algorithms in order to estimate the parameters of the mixture models involved: the data augmentation and the birth–death Markov chain Monte Carlo (DAMCMC and BDMCMC). We used C++ (via the Rcpp package) in order to implement the most computationally intensive algorithms.  相似文献   

5.
We consider Bayesian analysis of data from multivariate linear regression models whose errors have a distribution that is a scale mixture of normals. Such models are used to analyze data on financial returns, which are notoriously heavy-tailed. Let π denote the intractable posterior density that results when this regression model is combined with the standard non-informative prior on the unknown regression coefficients and scale matrix of the errors. Roughly speaking, the posterior is proper if and only if nd+k, where n is the sample size, d is the dimension of the response, and k is number of covariates. We provide a method of making exact draws from π in the special case where n=d+k, and we study Markov chain Monte Carlo (MCMC) algorithms that can be used to explore π when n>d+k. In particular, we show how the Haar PX-DA technology studied in Hobert and Marchev (2008) [11] can be used to improve upon Liu’s (1996) [7] data augmentation (DA) algorithm. Indeed, the new algorithm that we introduce is theoretically superior to the DA algorithm, yet equivalent to DA in terms of computational complexity. Moreover, we analyze the convergence rates of these MCMC algorithms in the important special case where the regression errors have a Student’s t distribution. We prove that, under conditions on n, d, k, and the degrees of freedom of the t distribution, both algorithms converge at a geometric rate. These convergence rate results are important from a practical standpoint because geometric ergodicity guarantees the existence of central limit theorems which are essential for the calculation of valid asymptotic standard errors for MCMC based estimates.  相似文献   

6.
In this paper the usage of a stochastic optimization algorithm as a model search tool is proposed for the Bayesian variable selection problem in generalized linear models. Combining aspects of three well known stochastic optimization algorithms, namely, simulated annealing, genetic algorithm and tabu search, a powerful model search algorithm is produced. After choosing suitable priors, the posterior model probability is used as a criterion function for the algorithm; in cases when it is not analytically tractable Laplace approximation is used. The proposed algorithm is illustrated on normal linear and logistic regression models, for simulated and real-life examples, and it is shown that, with a very low computational cost, it achieves improved performance when compared with popular MCMC algorithms, such as the MCMC model composition, as well as with “vanilla” versions of simulated annealing, genetic algorithm and tabu search.  相似文献   

7.
Label switching is a well-known problem in the Bayesian analysis of mixture models. On the one hand, it complicates inference, and on the other hand, it has been perceived as a prerequisite to justify Markov chain Monte Carlo (MCMC) convergence. As a result, nonstandard MCMC algorithms that traverse the symmetric copies of the posterior distribution, and possibly genuine modes, have been proposed. To perform component-specific inference, methods to undo the label switching and to recover the interpretation of the components need to be applied. If latent allocations for the design of the MCMC strategy are included, and the sampler has converged, then labels assigned to each component may change from iteration to iteration. However, observations being allocated together must remain similar, and we use this fundamental fact to derive an easy and efficient solution to the label switching problem. We compare our strategy with other relabeling algorithms on univariate and multivariate data examples and demonstrate improvements over alternative strategies. Supplementary materials for this article are available online.  相似文献   

8.
Fitting hierarchical Bayesian models to spatially correlated datasets using Markov chain Monte Carlo (MCMC) techniques is computationally expensive. Complicated covariance structures of the underlying spatial processes, together with high-dimensional parameter space, mean that the number of calculations required grows cubically with the number of spatial locations at each MCMC iteration. This necessitates the need for efficient model parameterizations that hasten the convergence and improve the mixing of the associated algorithms. We consider partially centred parameterizations (PCPs) which lie on a continuum between what are known as the centered (CP) and noncentered parameterizations (NCP). By introducing a weight matrix we remove the conditional posterior correlation between the fixed and the random effects, and hence construct a PCP which achieves immediate convergence for a three-stage model, based on multiple Gaussian processes with known covariance parameters. When the covariance parameters are unknown we dynamically update the parameterization within the sampler. The PCP outperforms both the CP and the NCP and leads to a fully automated algorithm which has been demonstrated in two simulation examples. The effectiveness of the spatially varying PCP is illustrated with a practical dataset of nitrogen dioxide concentration levels. Supplemental materials consisting of appendices, datasets, and computer code to reproduce the results are available online.  相似文献   

9.
In the following article, we investigate a particle filter for approximating Feynman–Kac models with indicator potentials and we use this algorithm within Markov chain Monte Carlo (MCMC) to learn static parameters of the model. Examples of such models include approximate Bayesian computation (ABC) posteriors associated with hidden Markov models (HMMs) or rare-event problems. Such models require the use of advanced particle filter or MCMC algorithms to perform estimation. One of the drawbacks of existing particle filters is that they may “collapse,” in that the algorithm may terminate early, due to the indicator potentials. In this article, using a newly developed special case of the locally adaptive particle filter, we use an algorithm that can deal with this latter problem, while introducing a random cost per-time step. In particular, we show how this algorithm can be used within MCMC, using particle MCMC. It is established that, when not taking into account computational time, when the new MCMC algorithm is applied to a simplified model it has a lower asymptotic variance in comparison to a standard particle MCMC algorithm. Numerical examples are presented for ABC approximations of HMMs.  相似文献   

10.
Adaptive Markov Chain Monte Carlo (MCMC) algorithms attempt to ‘learn’ from the results of past iterations so the Markov chain can converge quicker. Unfortunately, adaptive MCMC algorithms are no longer Markovian, so their convergence is difficult to guarantee. In this paper, we develop new diagnostics to determine whether the adaption is still improving the convergence. We present an algorithm which automatically stops adapting once it determines further adaption will not increase the convergence speed. Our algorithm allows the computer to tune a ‘good’ Markov chain through multiple phases of adaption, and then run conventional non-adaptive MCMC. In this way, the efficiency gains of adaptive MCMC can be obtained while still ensuring convergence to the target distribution.  相似文献   

11.
Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the “factor slice sampler,” a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. This article has online supplementary materials.  相似文献   

12.
The performance of Markov chain Monte Carlo (MCMC) algorithms like the Metropolis Hastings Random Walk (MHRW) is highly dependent on the choice of scaling matrix for the proposal distributions. A popular choice of scaling matrix in adaptive MCMC methods is to use the empirical covariance matrix (ECM) of previous samples. However, this choice is problematic if the dimension of the target distribution is large, since the ECM then converges slowly and is computationally expensive to use. We propose two algorithms to improve convergence and decrease computational cost of adaptive MCMC methods in cases when the precision (inverse covariance) matrix of the target density can be well-approximated by a sparse matrix. The first is an algorithm for online estimation of the Cholesky factor of a sparse precision matrix. The second estimates the sparsity structure of the precision matrix. Combining the two algorithms allows us to construct precision-based adaptive MCMC algorithms that can be used as black-box methods for densities with unknown dependency structures. We construct precision-based versions of the adaptive MHRW and the adaptive Metropolis adjusted Langevin algorithm and demonstrate the performance of the methods in two examples. Supplementary materials for this article are available online.  相似文献   

13.
Importance sampling methods can be iterated like MCMC algorithms, while being more robust against dependence and starting values. The population Monte Carlo principle consists of iterated generations of importance samples, with importance functions depending on the previously generated importance samples. The advantage over MCMC algorithms is that the scheme is unbiased at any iteration and can thus be stopped at any time, while iterations improve the performances of the importance function, thus leading to an adaptive importance sampling. We illustrate this method on a mixture example with multiscale importance functions. A second example reanalyzes the ion channel model using an importance sampling scheme based on a hidden Markov representation, and compares population Monte Carlo with a corresponding MCMC algorithm.  相似文献   

14.
Abstract

In this article we discuss the problem of assessing the performance of Markov chain Monte Carlo (MCMC) algorithms on the basis of simulation output. In essence, we extend the original ideas of Gelman and Rubin and, more recently, Brooks and Gelman, to problems where we are able to split the variation inherent within the MCMC simulation output into two distinct groups. We show how such a diagnostic may be useful in assessing the performance of MCMC samplers addressing model choice problems, such as the reversible jump MCMC algorithm. In the model choice context, we show how the reversible jump MCMC simulation output for parameters that retain a coherent interpretation throughout the simulation, can be used to assess convergence. By considering various decompositions of the sampling variance of this parameter, we can assess the performance of our MCMC sampler in terms of its mixing properties both within and between models and we illustrate our approach in both the graphical Gaussian models and normal mixtures context. Finally, we provide an example of the application of our diagnostic to the assessment of the influence of different starting values on MCMC simulation output, thereby illustrating the wider utility of our method beyond the Bayesian model choice and reversible jump MCMC context.  相似文献   

15.
A finite mixture model has been used to fit the data from heterogeneous populations to many applications. An Expectation Maximization (EM) algorithm is the most popular method to estimate parameters in a finite mixture model. A Bayesian approach is another method for fitting a mixture model. However, the EM algorithm often converges to the local maximum regions, and it is sensitive to the choice of starting points. In the Bayesian approach, the Markov Chain Monte Carlo (MCMC) sometimes converges to the local mode and is difficult to move to another mode. Hence, in this paper we propose a new method to improve the limitation of EM algorithm so that the EM can estimate the parameters at the global maximum region and to develop a more effective Bayesian approach so that the MCMC chain moves from one mode to another more easily in the mixture model. Our approach is developed by using both simulated annealing (SA) and adaptive rejection metropolis sampling (ARMS). Although SA is a well-known approach for detecting distinct modes, the limitation of SA is the difficulty in choosing sequences of proper proposal distributions for a target distribution. Since ARMS uses a piecewise linear envelope function for a proposal distribution, we incorporate ARMS into an SA approach so that we can start a more proper proposal distribution and detect separate modes. As a result, we can detect the maximum region and estimate parameters for this global region. We refer to this approach as ARMS annealing. By putting together ARMS annealing with the EM algorithm and with the Bayesian approach, respectively, we have proposed two approaches: an EM-ARMS annealing algorithm and a Bayesian-ARMS annealing approach. We compare our two approaches with traditional EM algorithm alone and Bayesian approach alone using simulation, showing that our two approaches are comparable to each other but perform better than EM algorithm alone and Bayesian approach alone. Our two approaches detect the global maximum region well and estimate the parameters in this region. We demonstrate the advantage of our approaches using an example of the mixture of two Poisson regression models. This mixture model is used to analyze a survey data on the number of charitable donations.  相似文献   

16.
Regression density estimation is the problem of flexibly estimating a response distribution as a function of covariates. An important approach to regression density estimation uses finite mixture models and our article considers flexible mixtures of heteroscedastic regression (MHR) models where the response distribution is a normal mixture, with the component means, variances, and mixture weights all varying as a function of covariates. Our article develops fast variational approximation (VA) methods for inference. Our motivation is that alternative computationally intensive Markov chain Monte Carlo (MCMC) methods for fitting mixture models are difficult to apply when it is desired to fit models repeatedly in exploratory analysis and model choice. Our article makes three contributions. First, a VA for MHR models is described where the variational lower bound is in closed form. Second, the basic approximation can be improved by using stochastic approximation (SA) methods to perturb the initial solution to attain higher accuracy. Third, the advantages of our approach for model choice and evaluation compared with MCMC-based approaches are illustrated. These advantages are particularly compelling for time series data where repeated refitting for one-step-ahead prediction in model choice and diagnostics and in rolling-window computations is very common. Supplementary materials for the article are available online.  相似文献   

17.
Summary  Regression and classification problems can be viewed as special cases of the problem of function estimation. It is rather well known that a two-layer perceptron with sigmoidal transformation functions can approximate any continuous function on the compact subsets ofRP if there are sufficient number of hidden nodes. In this paper, we present an algorithm for fitting perceptron models, which is quite different from the usual backpropagation or Levenberg-Marquardt algorithm. This new algorithm based on backfitting ensures a better convergence than backpropagation. We have also used resampling techniques to select an ideal number of hidden nodes automatically using the training data itself. This resampling technique helps to avoid the problem of overfitting that one faces for the usual perceptron learning algorithms without any model selection scheme. Case studies and simulation results are presented to illustrate the performance of this proposed algorithm.  相似文献   

18.
Complex hierarchical models lead to a complicated likelihood and then, in a Bayesian analysis, to complicated posterior distributions. To obtain Bayes estimates such as the posterior mean or Bayesian confidence regions, it is therefore necessary to simulate the posterior distribution using a method such as an MCMC algorithm. These algorithms often get slower as the number of observations increases, especially when the latent variables are considered. To improve the convergence of the algorithm, we propose to decrease the number of parameters to simulate at each iteration by using a Laplace approximation on the nuisance parameters. We provide a theoretical study of the impact that such an approximation has on the target posterior distribution. We prove that the distance between the true target distribution and the approximation becomes of order O(N?a) with a ∈ (0, 1), a close to 1, as the number of observations N increases. A simulation study illustrates the theoretical results. The approximated MCMC algorithm behaves extremely well on an example which is driven by a study on HIV patients.  相似文献   

19.
Strong convergence theorem of viscosity approximation methods for nonexpansive mapping have been studied. We also know that CQ algorithm for solving the split feasibility problem (SFP) has a weak convergence result. In this paper, we use viscosity approximation methods and some related knowledge to solve a class of generalized SFP’s with monotone variational inequalities in Hilbert space. We propose some iterative algorithms based on viscosity approximation methods and get strong convergence theorems. As applications, we can use algorithms we proposed for solving split variational inequality problems (SVIP), split constrained convex minimization problems and some related problems in Hilbert space.  相似文献   

20.
In this paper, we examine multigrid algorithms for cell centered finite difference approximations of second order elliptic boundary value problems. The cell centered application gives rise to one of the simplest non-variational multigrid algorithms. We shall provide an analysis which guarantees that the W-cycle and variable V-cycle multigrid algorithms converge with a rate of iterative convergence which can be bounded independently of the number of multilevel spaces. In contrast, the natural variational multigrid algorithm converges much more slowly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号