首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Obtained are the existence of solutions and the local energy decay of a linear thermoelastic plate equation in a 3 dim. exterior domain. The thermoplate equation is formulated as a Sobolev equation in the abstract framework. Our proof of the existence theorem is based on an argument due to Goldstein (Semigroups of Linear Operators and Applications. Oxford University Press: New York, 1985). To obtain the local energy decay, we use the commutation method in order to treat the high‐frequency part and a precise expansion of the resolvent operator obtained by constructing the parametrix in order to treat the low‐frequency. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Using a direct approach, we establish the polynomial energy decay rate for smooth solutions of the equation of Kirchhoff plate. Consequently, we obtain the strong stability in the absence of compactness of the resolvent of the infinitesimal operator.  相似文献   

3.
In this paper, we consider a degenerate viscoelastic Petrovsky-type plate equation \[ K(\mbox{\boldmath $x$})u_{tt}+\Delta^2u-\int_0^tg(t-s)\Delta^2u(s)ds+f(u)=0 \] with boundary feedback. Under the weaker assumption on the relaxation function, the general energy decay is proved by priori estimates and analysis of Lyapunov-like functional. The exponential decay result and polynomial decay result in some literature are special cases of this paper.  相似文献   

4.
The Liapunov method is celebrated for its strength to establish strong decay of solutions of damped equations. Extensions to infinite dimensional settings have been studied by several authors (see e.g. Haraux, 1991 [11], and Komornik and Zuazua, 1990 [17] and references therein). Results on optimal energy decay rates under general conditions of the feedback is far from being complete. The purpose of this paper is to show that general dissipative vibrating systems have structural properties due to dissipation. We present a general approach based on convexity arguments to establish sharp optimal or quasi-optimal upper energy decay rates for these systems, and on comparison principles based on the dissipation property, and interpolation inequalities (in the infinite dimensional case) for lower bounds of the energy. We stress the fact that this method works for finite as well as infinite dimensional vibrating systems and as well as for applications to semi-discretized nonlinear damped vibrating PDE's. A part of this approach has been introduced in Alabau-Boussouira (2004, 2005) [1] and [2]. In the present paper, we identify a new, simple and explicit criteria to select a class of nonlinear feedbacks, for which we prove a simplified explicit energy decay formula comparatively to the more general but also more complex formula we give in Alabau-Boussouira (2004, 2005) [1] and [2]. Moreover, we prove optimality of the decay rates for this class, in the finite dimensional case. This class includes a wide range of feedbacks, ranging from very weak nonlinear dissipation (exponentially decaying in a neighborhood of zero), to polynomial, or polynomial-logarithmic decaying feedbacks at the origin. In the infinite dimensional case, we establish a comparison principle on the energy of sufficiently smooth solutions through the dissipation relation. This principle relies on suitable interpolation inequalities. It allows us to give lower bounds for the energy of smooth initial data for the one-dimensional wave equation with a distributed polynomial damping, which improves Haraux (1995) [12] lower estimate of the energy for this case. We also establish lower bounds in the multi-dimensional case for sufficiently smooth solutions when such solutions exist. We further mention applications of these various results to several classes of PDE's, namely: the locally and boundary damped multi-dimensional wave equation, the locally damped plate equation and the globally damped coupled Timoshenko beams system but it applies to several other examples. Furthermore, we show that these optimal energy decay results apply to finite dimensional systems obtained from spatial discretization of infinite dimensional damped systems. We illustrate these results on the one-dimensional locally damped wave and plate equations discretized by finite differences and give the optimal energy decay rates for these two examples. These optimal rates are not uniform with respect to the discretization parameter. We also discuss and explain why optimality results have to be stated differently for feedbacks close to linear behavior at the origin.  相似文献   

5.
In this paper, we consider the plate equation with both weak frictional damping and viscoelastic damping acting simultaneously and complementarily in the domain. An energy decay rate formula is obtained under nonrestrictive hypotheses on the relaxation function and the frictional damping term. Our results improve and generalize previous results existing in the literature.  相似文献   

6.
We establish the Lp ? Lq estimates for solutions of the damped plate equation in exterior domains with the help of a local energy decay, which is obtained by using the spectral analysis to the corresponding stationary problem.  相似文献   

7.
The main result of this paper provides uniform decay rates obtained for the energy function associated with a three-dimensional structural acoustic model described by coupled system consisting of the wave equation and plate equation with the coupling on the interface between the acoustic chamber and the wall. The uniform stabilization is achieved by introducing a nonlinear dissipation acting via boundary forces applied at the edge of the plate and viscous or boundary damping applied to the wave equation. The results obtained in this paper extend, to the non-analytic, hyperbolic-like setting, the results obtained previously in the literature for acoustic problems modeled by structurally damped plates (governed by analytic semigroups). As a bypass product, we also obtain optimal uniform decay rates for the Euler Bernoulli plate equations with nonlinear boundary dissipation acting via shear forces only and without (i) any geometric conditions imposed on the domain ,(ii) any growth conditions at the origin imposed on the nonlinear function. This is in contrast with the results obtained previously in the literature ([22] and references therein).  相似文献   

8.
In this paper we study the asymptotic behavior of solutions of a dissipative coupled system where we have interactions between a Kirchhoff plate and an Euler–Bernoulli plate. The dissipative mechanism is given by memory terms that act either collaboratively (in both equations) or unilaterally (in only one equation). We show that the solutions of this system decay to zero sometimes exponentially and other times polynomially. We found explicit decay rates that depend on the fractional exponents of the memory in each of the following cases: when the memory only acts in the Kirchhoff equation, or only in the Euler–Bernoulli equation, or in both. We also show that all decay rates found are the best. The results obtained are surprising for the following facts: in the collaborative case, the best decay rates of the system are given by the worst decay rates of the uncoupled equations, and in the unilateral case, we conclude that the memory effects in the Euler–Bernoulli equation dissipate the system more slowly than memory effects in the Kirchhoff equation.  相似文献   

9.
We investigate decay properties for a system of coupled partial differential equations which model the interaction between acoustic waves in a cavity and the walls of the cavity. In this system a wave equation is coupled to a structurally damped plate or beam equation. The underlying semigroup for this system is not uniformly stable, but when the system is appropriately restricted we obtain some uniform stability. We present two results of this type. For the first result, we assume that the initial wave data is zero, and the initial plate or beam data is in the natural energy space; then the corresponding solution to system decays uniformly to zero. For the second result, we assume that the initial condition is in the natural energy space and the control function is L2(0,∞) (in time) into the control space; then the beam displacement and velocity are both L2(0,∞) into a space with two spatial derivatives.  相似文献   

10.
In this paper, we give a positive answer to the open question raised in [E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl., 70 (1991) 513–529] on the exponential decay of solutions for the semilinear plate equation with localized damping. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we use the combination of energy method and Fourier analysis to obtain the optimal time decay of the Boltzmann equation with frictional force towards equilibrium. Precisely speaking, we decompose the equation into macroscopic and microscopic partitions and perform the energy estimation. Then, we construct a special solution operator to a linearized equation without source term and use Fourier analysis to obtain the optimal decay rate to this solution operator. Finally, combining the decay rate with the energy estimation for nonlinear terms, the optimal decay rate to the Boltzmann equation with frictional force is established.  相似文献   

12.
We prove the pointwise decay of solutions to three linear equations: (1) the transport equation in phase space generalizing the classical Vlasov equation, (2) the linear Schrödinger equation, (3) the Airy (linear KdV) equation. The usual proofs use explicit representation formulae, and either obtain \(L^1\)\(L^\infty \) decay through directly estimating the fundamental solution in physical space or by studying oscillatory integrals coming from the representation in Fourier space. Our proof instead combines “vector field” commutators that capture the inherent symmetries of the relevant equations with conservation laws for mass and energy to get space–time weighted energy estimates. Combined with a simple version of Sobolev’s inequality this gives pointwise decay as desired. In the case of the Vlasov and Schrödinger equations, we can recover sharp pointwise decay; in the Schrödinger case we also show how to obtain local energy decay as well as Strichartz-type estimates. For the Airy equation we obtain a local energy decay that is almost sharp from the scaling point of view, but nonetheless misses the classical estimates by a gap. This work is inspired by the work of Klainerman on \(L^2\)\(L^\infty \) decay of wave equations, as well as the recent work of Fajman, Joudioux, and Smulevici on decay of mass distributions for the relativistic Vlasov equation.  相似文献   

13.
In this paper, we investigate asymptotic behavior for the solution of the Petrovsky equation with locally distributed damping. Without growth condition on the damping at the origin, we extend the energy decay result in Martinez (Rev. Math. Complut. Madr. 12(1):251–283, 1999) for the single wave equation to the Petrovsky equation. The explicit energy decay rate is established by using piecewise multiplier techniques and weighted nonlinear integral inequalities.  相似文献   

14.
The aim of this paper is to investigate the uniform stabilization of Euler-Bernoulli plate equation with variable coefficients in the principle part subject to nonlinear boundary feedback laws. The exponential or rational energy decay rate is obtained by the multiplier method and the Riemannian geometry method.  相似文献   

15.
In this article, we investigate a nonlinear viscoelastic equation with nonlinear localized damping and velocity-dependent material density. We prove the global existence of weak solutions and general decay of the energy by using the Faedo–Galerkin method [Z.Y. Zhang and X.J. Miao, Global existence and uniform decay for wave equation with dissipative term and boundary damping, Comput. Math. Appl. 59 (2010), pp. 1003–1018; J.Y. Park and J.R. Kang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Acta Appl. Math. 110 (2010), pp. 1393–1406] and the perturbed energy method [Zhang and Miao (2010); X.S. Han, and M.X. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonlinear Anal. TMA. 70 (2009), pp. 3090–3098], respectively. Furthermore, for certain initial data and suitable conditions on the relaxation function, we show that the energy decays exponentially or polynomially depending the rate of the decay of the relaxation function. This result is an improvement over the earlier ones in the literature.  相似文献   

16.
This paper is concerned with the decay rate of solutions for a quasilinear wave equation with viscosity. We use a so-called energy perturbation method to establish decay rate of solutions in terms of energy norm for a class of nonlinear functions. With the help of a comparison lemma of differential inequalities, we establish a relationship between decay rate of solutions and f .  相似文献   

17.
本文研究了一类具有动力边界条件的方程解的衰减性.利用能量扰动法,得到了解的衰减性与外力f(x,t)之间的关系,即它们具有相同的指数衰减性和代数衰减性.  相似文献   

18.
The energy of solutions of the wave equation with a suitable boundary dissipation decays exponentially to zero as time goes to infinity. We consider the finite-difference space semi-discretization scheme and we analyze whether the decay rate is independent of the mesh size. We focus on the one-dimensional case. First we show that the decay rate of the energy of the classical semi-discrete system in which the 1?d Laplacian is replaced by a three-point finite difference scheme is not uniform with respect to the net-spacing size h. Actually, the decay rate tends to zero as h goes to zero. Then we prove that adding a suitable vanishing numerical viscosity term leads to a uniform (with respect to the mesh size) exponential decay of the energy of solutions. This numerical viscosity term damps out the high frequency numerical spurious oscillations while the convergence of the scheme towards the original damped wave equation is kept. Our method of proof relies essentially on discrete multiplier techniques.  相似文献   

19.
We consider the decay rate of energy of the 1D damped original nonlinear wave equation. We first construct a new energy function. Then, employing the perturbed energy method and the generalized Young’s inequality, we prove that, with a general growth assumption on the nonlinear damping force near the origin, the decay rate of energy is governed by a dissipative ordinary differential equation. This allows us to recover the classical exponential, polynomial, or logarithmic decay rate for the linear, polynomial or exponentially degenerating damping force near the origin, respectively. Unlike the linear wave equation, the exponential decay rate constant depends on the initial data, due to the nonlinearity.  相似文献   

20.
We obtain a dispersive long-time decay in weighted energy norms for solutions of the 3D Klein-Gordon equation with generic potential. The decay extends the results obtained by Jensen and Kato for the 3D Schrödinger equation. For the proof we modify the spectral approach of Jensen and Kato to make it applicable to relativistic equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号