首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We consider systems of Timoshenko type in a one-dimensional bounded domain. The physical system is damped by a single feedback force, only in the equation for the rotation angle, no direct damping is applied on the equation for the transverse displacement of the beam. Moreover the damping is assumed to be nonlinear with no growth assumption at the origin, which allows very weak damping. We establish a general semi-explicit formula for the decay rate of the energy at infinity in the case of the same speed of propagation in the two equations of the system. We prove polynomial decay in the case of different speed of propagation for both linear and nonlinear globally Lipschitz feedbacks.   相似文献   

2.
In this paper we consider the decay and blow-up properties of a viscoelastic wave equation with boundary damping and source terms. We first extend the decay result (for the case of linear damping) obtained by Lu et al. (On a viscoelastic equation with nonlinear boundary damping and source terms: Global existence and decay of the solution, Nonlinear Analysis: Real World Applications 12 (1) (2011), 295-303) to the nonlinear damping case under weaker assumption on the relaxation function g(t). Then, we give an exponential decay result without the relation between g(t) and g(t) for the linear damping case, provided that ‖gL1(0,) is small enough. Finally, we establish two blow-up results: one is for certain solutions with nonpositive initial energy as well as positive initial energy for both the linear and nonlinear damping cases, the other is for certain solutions with arbitrarily positive initial energy for the linear damping case.  相似文献   

3.
We study the rate of decay of solutions of the wave equation with localized nonlinear damping without any growth restriction and without any assumption on the dynamics. Providing regular initial data, the asymptotic decay rates of the energy functional are obtained by solving nonlinear ODE. Moreover, we give explicit uniform decay rates of the energy. More precisely, we find that the energy decays uniformly at last, as fast as 1/(ln(t+2))2−δ,δ>0, when the damping has a polynomial growth or sublinear, and for an exponential damping at the origin the energy decays at last, as fast as 1/(ln(ln(t+e2)))2−δ,δ>0.  相似文献   

4.
In this paper, we investigate asymptotic behavior for the solution of the Petrovsky equation with locally distributed damping. Without growth condition on the damping at the origin, we extend the energy decay result in Martinez (Rev. Math. Complut. Madr. 12(1):251–283, 1999) for the single wave equation to the Petrovsky equation. The explicit energy decay rate is established by using piecewise multiplier techniques and weighted nonlinear integral inequalities.  相似文献   

5.
This paper is concerned with the asymptotic stability and instability of solutions to a variable coefficient logarithmic wave equation with nonlinear damping and memory term. Such model describes wave traveling through nonhomogeneous viscoelastic materials. By choosing appropriate multiplier and using weighted energy method, we prove the exponential decay of the energy. Moreover, we also obtain the instability of the solutions at the infinity in the presence of the nonlinear damping.  相似文献   

6.
In this paper, we study the initial-boundary value problem for a coupled system of nonlinear viscoelastic wave equations of Kirchhoff type with Balakrishnan–Taylor damping terms. For certain class of relaxation functions and certain initial data, we prove that the decay rate of the solution energy is similar to that of relaxation functions which is not necessarily of exponential or polynomial type. Also, we show that nonlinear source of polynomial type is able to force solutions to blow up in finite time even in presence of stronger damping.  相似文献   

7.
We consider a wave equation with semilinear porous acoustic boundary conditions. This is a coupled system of second and first order in time partial differential equations, with possibly semilinear boundary conditions on the interface. The results obtained are (i) strong stability for the linear model, (ii) exponential decay rates for the energy of the linear model, and (iii) local exponential decay rates for the energy of the semilinear model. This work builds on a previous result showing generation of a well-posed dynamical system. The main tools used in the proofs are (i) the Stability Theorem of Arendt-Batty, (ii) energy methods used in the study of a wave equation with boundary damping, and (iii) an abstract result of I. Lasiecka applicable to hyperbolic-like systems with nonlinearly perturbed boundary conditions.  相似文献   

8.
In this paper, we consider a system of coupled quasilinear viscoelastic equations with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which extends some existing results concerning a general decay for a single equation to the case of system, and a nonlinear system of viscoelastic wave equations to a quasilinear system.  相似文献   

9.
We consider a wave equation with nonlinear acoustic boundary conditions. This is a nonlinearly coupled system of hyperbolic equations modeling an acoustic/structure interaction, with an additional boundary damping term to induce both existence of solutions as well as stability. Using the methods of Lasiecka and Tataru for a wave equation with nonlinear boundary damping, we demonstrate well-posedness and uniform decay rates for solutions in the finite energy space, with the results depending on the relationship between (i) the mass of the structure, (ii) the nonlinear coupling term, and (iii) the size of the nonlinear damping. We also show that solutions (in the linear case) depend continuously on the mass of the structure as it tends to zero, which provides rigorous justification for studying the case where the mass is equal to zero.  相似文献   

10.
In this paper, we shall investigate the decay property of the solutions to the initial-boundary value problem for the elastic wave equation with a local time-dependent nonlinear damping. We give some decay rate of the energy when the damping term is effective only in a neighborhood of a suitable subset of the boundary. The results obtained in this paper extend, in particular, the known results for the scalar wave equation.  相似文献   

11.
The linear viscoelastic equation is considered. We prove uniform decay rates of the energy by assuming a nonlinear feedback acting on the boundary, without imposing any restrictive growth assumption on the damping term and strongly weakening the usual assumptions on the relaxation function. Our estimate depends both on the behavior of the damping term near zero and on the behavior of the relaxation function at infinity.  相似文献   

12.
This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.  相似文献   

13.
We investigate the initial value problem for a class of nonlinear wave equations of sixth order with damping. The decay structure of this equation is of the regularity‐loss type, which causes difficulty in high‐frequency region. By using the Fourier splitting frequency technique and energy method in Fourier space, we establish asymptotic profiles of solutions to the linear equation that is given by the convolution of the fundamental solutions of heat and free wave equation. Moreover, the asymptotic profile of solutions shows the decay estimate of solutions to the corresponding linear equation obtained in this paper that is optimal under some conditions. Finally, global existence and optimal decay estimate of solutions to this equation are also established. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This work deals with the study of a new class of nonlinear viscoelastic Kirchhoff equation with Balakrishnan‐Taylor damping and logarithmic nonlinearity. A decay result of the energy of solutions for the problem without imposing the usual relation between a certain relaxation function and its derivative is established. This result generalizes earlier ones to an arbitrary rate of decay, which is not necessarily of exponential or polynomial decay.  相似文献   

15.
ABSTRACT

This paper is concerned with the decay property of a nonlinear viscoelastic wave equation with linear damping, nonlinear damping and source term. Under weaker assumption on the relaxation function, we establish a general decay result, which extends the result obtained in Messaoudi [Exponential decay of solutions of a nonlinearly damped wave equation. Nodea-Nonlinear Differ Equat Appl. 2005;12:391–399].  相似文献   

16.
We study the long-time behavior of solutions of the one dimensional wave equation with nonlinear damping coefficient. We prove that if the damping coefficient function is strictly positive near the origin then this equation possesses a global attractor.  相似文献   

17.
A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].  相似文献   

18.
A viscoelastic equation with Balakrishnan-Taylor damping and nonlinear boundary/interior sources is considered in a bounded domain. Under appropriate assumptions imposed on the source and the damping, we establish uniform decay rate of the solution energy in terms of the behavior of the nonlinear feedback and the relaxation function, without setting any restrictive growth assumptions on the damping at the origin and weakening the usual assumptions on the relaxation function.  相似文献   

19.
In this work, we consider a nonlinear coupled wave equations with initial‐boundary value conditions and nonlinear damping and source terms. Under suitable assumptions on the damping terms and source terms and initial data in the stable set, we obtain that the decay estimates of the energy function is exponential or polynomial by using Nakao's method. By using the energy method, we obtain the blow‐up result of solution with some positive or nonpositive initial energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This work is concerned with obtention of energy decay estimates for Petrowsky equation with a nonlinear dissipation which is active only in an interior subset of the domain. We prove that the piecewise multiplier method as introduced by [20] and [22] for the wave equation can be extended to the Petrowsky equation. Moreover, we also apply some recent results by the author to obtain precise decay rate estimates for the energy, without specifying the growth of the nonlinear dissipation close to the origin by means of convex properties and nonlinear integral inequalities for the energy of the solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号