首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Let t: D ?D¢\tau: {\cal D} \rightarrow{\cal D}^\prime be an equivariant holomorphic map of symmetric domains associated to a homomorphism r: \Bbb G ?\Bbb G¢{\bf\rho}: {\Bbb G} \rightarrow{\Bbb G}^\prime of semisimple algebraic groups defined over \Bbb Q{\Bbb Q} . If G ì \Bbb G (\Bbb Q)\Gamma\subset {\Bbb G} ({\Bbb Q}) and G¢ ì \Bbb G¢(\Bbb Q)\Gamma^\prime \subset {\Bbb G}^\prime ({\Bbb Q}) are torsion-free arithmetic subgroups with r (G) ì G¢{\bf\rho} (\Gamma) \subset \Gamma^\prime , the map G\D ?G¢\D¢\Gamma\backslash {\cal D} \rightarrow\Gamma^\prime \backslash {\cal D}^\prime of arithmetic varieties and the rationality of D{\cal D} and D¢{\cal D}^\prime as well as the commensurability groups of s ? Aut (\Bbb C)\sigma \in {\rm Aut} ({\Bbb C}) determines a conjugate equivariant holomorphic map ts: Ds ?D¢s\tau^\sigma: {\cal D}^\sigma \rightarrow{\cal D}^{\prime\sigma} of fs: (G\D)s ?(G¢\D¢)s\phi^\sigma: (\Gamma\backslash {\cal D})^\sigma \rightarrow(\Gamma^\prime \backslash {\cal D}^\prime)^\sigma of . We prove that is rational if is rational.  相似文献   

2.
Given a compact Kähler manifold M of real dimension 2n, let P be either a compact complex hypersurface of M or a compact totally real submanifold of dimension n. Let q\cal q (resp. \Bbb R Pn{\Bbb R} P^n) be the complex hyperquadric (resp. the totally geodesic real projective space) in the complex projective space \Bbb C Pn{\Bbb C} P^n of constant holomorphic sectional curvature 4l \lambda . We prove that if the Ricci and some (n-1)-Ricci curvatures of M (and, when P is complex, the mean absolute curvature of P) are bounded from below by some special constants and volume (P) / volume (M) £\leq volume (q\cal q)/ volume (\Bbb C Pn)({\Bbb C} P^n) (resp. £\leq volume (\Bbb R Pn)({\Bbb R} P^n) / volume (\Bbb C Pn)({\Bbb C} P^n)), then there is a holomorphic isometry between M and \Bbb C Pn{\Bbb C} P^n taking P isometrically onto q\cal q (resp. \Bbb R Pn{\Bbb R} P^n). We also classify the Kähler manifolds with boundary which are tubes of radius r around totally real and totally geodesic submanifolds of half dimension, have the holomorphic sectional and some (n-1)-Ricci curvatures bounded from below by those of the tube \Bbb R Pnr{\Bbb R} P^n_r of radius r around \Bbb R Pn{\Bbb R} P^n in \Bbb C Pn{\Bbb C} P^n and have the first Dirichlet eigenvalue not lower than that of \Bbb R Pnr{\Bbb R} P^n_r.  相似文献   

3.
We will say that a subgroup X of G satisfies property C in G if CG(X?Xg)\leqq X?Xg{\rm C}_{G}(X\cap X^{{g}})\leqq X\cap X^{{g}} for all g ? G{g}\in G. We obtain that if X is a nilpotent subgroup satisfying property C in G, then XF(G) is nilpotent. As consequence it follows that if N\triangleleft GN\triangleleft G is nilpotent and X is a nilpotent subgroup of G then CG(N?X)\leqq XC_G(N\cap X)\leqq X implies that NX is nilpotent.¶We investigate the relationship between the maximal nilpotent subgroups satisfying property C and the nilpotent injectors in a finite group.  相似文献   

4.
The entanglement characteristics of two qubits are encoded in the invariants of the adjoint action of the group SU(2) ⊗ SU(2) on the space of density matrices \mathfrakP+ {\mathfrak{P}_{+} } , defined as the space of 4 × 4 positive semidefinite Hermitian matrices. The corresponding ring \textC[ \mathfrakP+ ]\textSU( 2 ) ?\textSU ?( 2 ) {\text{C}}{\left[ {{\mathfrak{P}_{+} }} \right]^{{\text{SU}}\left( {2} \right) \otimes {\text{SU}} \otimes \left( {2} \right)}} of polynomial invariants is studied. A special integrity basis for \textC[ \mathfrakP+ ]\textSU( 2 ) ?\textSU ?( 2 ) {\text{C}}{\left[ {{\mathfrak{P}_{+} }} \right]^{{\text{SU}}\left( {2} \right) \otimes {\text{SU}} \otimes \left( {2} \right)}} is described, and the constraints on its elements imposed by the positive semidefiniteness of density matrices are given explicitly in the form of polynomial inequalities. The suggested basis is characterized by the property that the minimum number of invariants, namely, two primary invariants of degree 2, 3 and one secondary invariant of degree 4 appearing in the Hironaka decomposition of \textC[ \mathfrakP+ ]\textSU( 2 ) ?\textSU ?( 2 ) {\text{C}}{\left[ {{\mathfrak{P}_{+} }} \right]^{{\text{SU}}\left( {2} \right) \otimes {\text{SU}} \otimes \left( {2} \right)}} , are subject to the polynomial inequalities. Bibliography: 32 titles.  相似文献   

5.
We give an elementary argument for the well known fact that the endomorphism algebra End(A)?\Bbb Q {\rm {End}}(A)\otimes {\Bbb Q } of a simple complex abelian surface A can neither be an imaginary quadratic field nor a definite quaternion algebra. Another consequence of our argument is that a two-dimensional complex torus T with \Bbb Q (?d)\hookrightarrow End\Bbb Q (T){\Bbb Q }(\sqrt {d})\hookrightarrow {\rm{End_{{\Bbb Q }}}}(T) where \Bbb Q (?d){\Bbb Q }(\sqrt {d}) is real quadratic, is algebraic.  相似文献   

6.
Let G be a reductive algebraic group defined over \Bbb Q {\Bbb Q} . Let P, P' be parabolic subgroups of G, defined over \Bbb Q {\Bbb Q} , and let _boxclose_boxclose, a_P') t \in W({\frak a}_{P}, {\frak a}_{P'}) . In this paper we study the intertwining operator MP¢|P(t,l), l ? \frak a*P,\Bbb C M_{P' \vert P}(t,\lambda),\,\lambda \in {\frak a}^*_{P,{\Bbb C}} , acting in corresponding spaces of automorphic forms. One of the main results states that each matrix coefficient of MP¢|P(t,l) M_{P' \vert P}(t,\lambda) is a meromorphic function of order £ n + 1 \le n + 1 , where n = dim G. Using this result, we further investigate the rank one intertwining operators, in particular, we study the distribution of their poles.  相似文献   

7.
We establish a close link between the amenability property of a unitary representation p \pi of a group G (in the sense of Bekka) and the concentration property (in the sense of V. Milman) of the corresponding dynamical system (\Bbb Sp, G) ({\Bbb S}_{\pi}, G) , where \Bbb SH {\Bbb S}_{\cal H} is the unit sphere the Hilbert space of representation. We prove that p \pi is amenable if and only if either p \pi contains a finite-dimensional subrepresentation or the maximal uniform compactification of (\Bbb Sp ({\Bbb S}_{\pi} has a G-fixed point. Equivalently, the latter means that the G-space (\Bbb Sp, G) ({\Bbb S}_{\pi}, G) has the concentration property: every finite cover of the sphere \Bbb Sp {\Bbb S}_{\pi} contains a set A such that for every e > 0 \epsilon > 0 the e \epsilon -neighbourhoods of the translations of A by finitely many elements of G always intersect. As a corollary, amenability of p \pi is equivalent to the existence of a G-invariant mean on the uniformly continuous bounded functions on \Bbb Sp {\Bbb S}_{\pi} . As another corollary, a locally compact group G is amenable if and only if for every strongly continuous unitary representation of G in an infinite-dimensional Hilbert space H {\cal H} the system (\Bbb SH, G) ({\Bbb S}_{\cal H}, G) has the property of concentration.  相似文献   

8.
We give sufficient conditions on numbers d and m such that a linear system of degree m on the normalization C of a plane curve [`(C)]\overline {C} of degree d which is in a certain sense not too singular is in the natural way induced by either a pencil of lines or a pencil of conics in the plane. Those results generalize results on nodal and cuspidal plane curves and seem to complement the recent results of [2]. We present a new approach via the geometry of curves in \Bbb P1×\Bbb P2{\Bbb P}_1\times {\Bbb P}_2.  相似文献   

9.
Given a finite subset A{\cal A} of an additive group \Bbb G{\Bbb G} such as \Bbb Zn{\Bbb Z}^n or \Bbb Rn{\Bbb R}^n , we are interested in efficient covering of \Bbb G{\Bbb G} by translates of A{\cal A} , and efficient packing of translates of A{\cal A} in \Bbb G{\Bbb G} . A set S ì \Bbb G{\cal S} \subset {\Bbb G} provides a covering if the translates A + s{\cal A} + s with s ? Ss \in {\cal S} cover \Bbb G{\Bbb G} (i.e., their union is \Bbb G{\Bbb G} ), and the covering will be efficient if S{\cal S} has small density in \Bbb G{\Bbb G} . On the other hand, a set S ì \Bbb G{\cal S} \subset {\Bbb G} will provide a packing if the translated sets A + s{\cal A} + s with s ? Ss \in {\cal S} are mutually disjoint, and the packing is efficient if S{\cal S} has large density. In the present part (I) we will derive some facts on these concepts when \Bbb G = \Bbb Zn{\Bbb G} = {\Bbb Z}^n , and give estimates for the minimal covering densities and maximal packing densities of finite sets A ì \Bbb Zn{\cal A} \subset {\Bbb Z}^n . In part (II) we will again deal with \Bbb G = \Bbb Zn{\Bbb G} = {\Bbb Z}^n , and study the behaviour of such densities under linear transformations. In part (III) we will turn to \Bbb G = \Bbb Rn{\Bbb G} = {\Bbb R}^n .  相似文献   

10.
Abstract. For natural numbers n we inspect all factorizations n = ab of n with aba \le b in \Bbb N\Bbb N and denote by n=an bnn=a_n b_n the most quadratic one, i.e. such that bn - anb_n - a_n is minimal. Then the quotient k(n) : = an/bn\kappa (n) := a_n/b_n is a measure for the quadraticity of n. The best general estimate for k(n)\kappa (n) is of course very poor: 1/n £ k(n) £ 11/n \le \kappa (n)\le 1. But a Theorem of Hall and Tenenbaum [1, p. 29], implies(logn)-d-e £ k(n) £ (logn)-d(\log n)^{-\delta -\varepsilon } \le \kappa (n) \le (\log n)^{-\delta } on average, with d = 1 - (1+log2  2)/log2=0,08607 ?\delta = 1 - (1+\log _2 \,2)/\log 2=0,08607 \ldots and for every e > 0\varepsilon >0. Hence the natural numbers are fairly quadratic.¶k(n)\kappa (n) characterizes a specific optimal factorization of n. A quadraticity measure, which is more global with respect to the prime factorization of n, is k*(n): = ?1 £ ab, ab=n a/b\kappa ^*(n):= \textstyle\sum\limits \limits _{1\le a \le b, ab=n} a/b. We show k*(n) ~ \frac 12\kappa ^*(n) \sim \frac {1}{2} on average, and k*(n)=W(2\frac 12(1-e) log n/log 2n)\kappa ^*(n)=\Omega (2^{\frac {1}{2}(1-\varepsilon ) {\log}\, n/{\log} _2n})for every e > 0\varepsilon>0.  相似文献   

11.
We prove that the Morse decomposition in the sense of Kirwan and semistable decomposition in the sense of GIT of a \Bbb C*{\Bbb C}^{\ast} -K?hler manifold coincide if the moment map is proper and if the fixed points set X\Bbb C*X^{{\Bbb C}^{\ast}} has a finite number of connected components. For general K?hler space with holomorphic action of a complex reductive group G, if every component of the moment map is proper, the two decompositions also coincide if each semistable piece is Zariski open in its topological closure and the moment map square is minimal degenerate Morse function in the sense of Kirwan.  相似文献   

12.
To any field \Bbb K \Bbb K of characteristic zero, we associate a set (\mathbbK) (\mathbb{K}) and a group G0(\Bbb K) {\cal G}_0(\Bbb K) . Elements of (\mathbbK) (\mathbb{K}) are equivalence classes of families of Lie polynomials subject to associativity relations. Elements of G0(\Bbb K) {\cal G}_0(\Bbb K) are universal automorphisms of the adjoint representations of Lie bialgebras over \Bbb K \Bbb K . We construct a bijection between (\mathbbKG0(\Bbb K) (\mathbb{K})\times{\cal G}_0(\Bbb K) and the set of quantization functors of Lie bialgebras over \Bbb K \Bbb K . This construction involves the following steps.? 1) To each element v \varpi of (\mathbbK) (\mathbb{K}) , we associate a functor \frak a?\operatornameShv(\frak a) \frak a\mapsto\operatorname{Sh}^\varpi(\frak a) from the category of Lie algebras to that of Hopf algebras; \operatornameShv(\frak a) \operatorname{Sh}^\varpi(\frak a) contains U\frak a U\frak a .? 2) When \frak a \frak a and \frak b \frak b are Lie algebras, and r\frak a\frak b ? \frak a?\frak b r_{\frak a\frak b} \in\frak a\otimes\frak b , we construct an element ?v (r\frak a\frak b) {\cal R}^{\varpi} (r_{\frak a\frak b}) of \operatornameShv(\frak a)?\operatornameShv(\frak b) \operatorname{Sh}^\varpi(\frak a)\otimes\operatorname{Sh}^\varpi(\frak b) satisfying quasitriangularity identities; in particular, ?v(r\frak a\frak b) {\cal R}^\varpi(r_{\frak a\frak b}) defines a Hopf algebra morphism from \operatornameShv(\frak a)* \operatorname{Sh}^\varpi(\frak a)^* to \operatornameShv(\frak b) \operatorname{Sh}^\varpi(\frak b) .? 3) When \frak a = \frak b \frak a = \frak b and r\frak a ? \frak a?\frak a r_\frak a\in\frak a\otimes\frak a is a solution of CYBE, we construct a series rv(r\frak a) \rho^\varpi(r_\frak a) such that ?v(rv(r\frak a)) {\cal R}^\varpi(\rho^\varpi(r_\frak a)) is a solution of QYBE. The expression of rv(r\frak a) \rho^\varpi(r_\frak a) in terms of r\frak a r_\frak a involves Lie polynomials, and we show that this expression is unique at a universal level. This step relies on vanishing statements for cohomologies arising from universal algebras for the solutions of CYBE.? 4) We define the quantization of a Lie bialgebra \frak g \frak g as the image of the morphism defined by ?v(rv(r)) {\cal R}^\varpi(\rho^\varpi(r)) , where r ? \mathfrakg ?\mathfrakg* r \in \mathfrak{g} \otimes \mathfrak{g}^* .<\P>  相似文献   

13.
We prove several results concerning arithmetic progressions in sets of integers. Suppose, for example, that a \alpha and b \beta are positive reals, that N is a large prime and that C,D í \Bbb Z/N\Bbb Z C,D \subseteq {\Bbb Z}/N{\Bbb Z} have sizes gN \gamma N and dN \delta N respectively. Then the sumset C + D contains an AP of length at least ec ?{log} N e^{c \sqrt{\rm log} N} , where c > 0 depends only on g \gamma and d \delta . In deriving these results we introduce the concept of hereditary non-uniformity (HNU) for subsets of \Bbb Z/N\Bbb Z {\Bbb Z}/N{\Bbb Z} , and prove a structural result for sets with this property.  相似文献   

14.
We introduce vector-valued Jacobi-like forms associated to a representation r: G? GL(n,\Bbb C)\rho: \Gamma \rightarrow GL(n,{\Bbb C}) of a discrete subgroup G ì SL(2,\Bbb C)\Gamma \subset SL(2,{\Bbb C}) in \Bbb Cn{\Bbb C}^n and establish a correspondence between such vector-valued Jacobi-like forms and sequences of vector-valued modular forms of different weights with respect to ρ. We determine a lifting of vector-valued modular forms to vector-valued Jacobi-like forms as well as a lifting of scalar-valued Jacobi-like forms to vector-valued Jacobi-like forms. We also construct Rankin-Cohen brackets for vector-valued modular forms.  相似文献   

15.
Let B\cal B be a p-block of cyclic defect of a Hecke order over the complete ring \Bbb Z[q] áq-1,p ?\Bbb {Z}[q] _{\langle q-1,p \rangle}; i.e. modulo áq-1 ?\langle q-1 \rangle it is a p-block B of cyclic defect of the underlying Coxeter group G. Then B\cal B is a tree order over \Bbb Z[q]áq-1, p ?\Bbb {Z}[q]_{\langle q-1, p \rangle } to the Brauer tree of B. Moreover, in case B\cal B is the principal block of the Hecke order of the symmetric group S(p) on p elements, then B\cal B can be described explicitly. In this case a complete set of non-isomorphic indecomposable Cohen-Macaulay B\cal B-modules is given.  相似文献   

16.
We will show that the factorization condition for the Fourier integral operators Ir m (X,Y;L )I_\rho ^\mu (X,Y;\it\Lambda ) leads to a parametrized parabolic Monge-Ampère equation. For an analytic operator, the fibration by the kernels of the Hessian of phase function is shown to be analytic in a number of cases, by considering a more general continuation problem for the level sets of a holomorphic mapping. The results are applied to obtain Lp-continuity for translation invariant operators in \Bbb Rn{\Bbb R}^n with n £ 4n\leq 4 and for arbitrary \Bbb Rn{\Bbb R}^n with dpX×Y|Ln+2d\pi _{X\times Y}|_\Lambda \leq n+2.  相似文献   

17.
On the assumption of the truth of the Riemann hypothesis for the Riemann zeta function we construct a class of modified von-Mangoldt functions with slightly better mean value properties than the well known function L\Lambda . For every e ? (0,1/2)\varepsilon \in (0,1/2) there is a [(L)\tilde] : \Bbb N ? \Bbb C\tilde {\Lambda} : \Bbb N \to \Bbb C such that¶ i) [(L)\tilde] (n) = L (n) (1 + O(n-1/4  logn))\tilde {\Lambda} (n) = \Lambda (n) (1 + O(n^{-1/4\,} \log n)) and¶ii) ?n \leqq x [(L)\tilde] (n) (1- [(n)/(x)]) = [(x)/2] + O(x1/4+e) (x \geqq 2).\sum \limits_{n \leqq x} \tilde {\Lambda} (n) \left(1- {{n}\over{x}}\right) = {{x}\over{2}} + O(x^{1/4+\varepsilon }) (x \geqq 2).¶Unfortunately, this does not lead to an improved error term estimation for the unweighted sum ?n \leqq x [(L)\tilde] (n)\sum \limits_{n \leqq x} \tilde {\Lambda} (n), which would be of importance for the distance between consecutive primes.  相似文献   

18.
We prove that every symplectic Kähler manifold (M;W) (M;\Omega) with integral [W] [\Omega] decomposes into a disjoint union (M,W) = (E,w0) \coprod D (M,\Omega) = (E,\omega_0) \coprod \Delta , where (E,w0) (E,\omega_0) is a disc bundle endowed with a standard symplectic form w0 \omega_0 and D \Delta is an isotropic CW-complex. We perform explicit computations of this decomposition on several examples.¶As an application we establish the following symplectic intersection phenomenon: There exist symplectically irremovable intersections between contractible domains and Lagrangian submanifolds. For example, we prove that every symplectic embedding j:B2n(l) ? \Bbb CPn \varphi:B^{2n}(\lambda) \to {\Bbb C}P^n of a ball of radius l2 3 1/2 \lambda^2 \ge 1/2 must intersect the standard Lagrangian real projective space \Bbb RPn ì \Bbb CPn {\Bbb R}P^n \subset {\Bbb C}P^n .  相似文献   

19.
We consider systems of partial differential equations with constant coefficients of the form ( R(Dx, Dy)f = 0, P(Dx)f = g), f,g ? C(W),\big ( R(D_x, D_y)f = 0, P(D_x)f = {g}\big ), f,g \in {C}^{\infty}(\Omega),, where R (and P) are operators in (n + 1) variables (and in n variables, respectively), g satisfies the compatibility condition R(Dx, Dy)g = 0  and  W ì \Bbb Rn+1R(D_x, D_y){g} = 0 \ {\rm and} \ \Omega \subset {\Bbb R}^{n+1} is open. Let R be elliptic. We show that the solvability of such systems for certain nonconvex sets W\Omega implies that any localization at ¥\infty of the principle part Pm of P is hyperbolic. In contrast to this result such systems can always be solved on convex open sets W\Omega by the fundamental principle of Ehrenpreis-Palamodov.  相似文献   

20.
The algebra Bp(\Bbb R){\cal B}_p({\Bbb R}), p ? (1,¥)\{2}p\in (1,\infty )\setminus \{2\}, consisting of all measurable sets in \Bbb R{\Bbb R} whose characteristic function is a Fourier p-multiplier, forms an algebra of sets containing many interesting and non-trivial elements (e.g. all intervals and their finite unions, certain periodic sets, arbitrary countable unions of dyadic intervals, etc.). However, Bp(\Bbb R){\cal B}_p({\Bbb R}) fails to be a s\sigma -algebra. It has been shown by V. Lebedev and A. Olevskii [4] that if E ? Bp(\Bbb R)E\in {\cal B}_p({\Bbb R}), then E must coincide a.e. with an open set, a remarkable topological constraint on E. In this note we show if $2 < p < \infty $2 < p < \infty , then there exists E ? Bp(\Bbb R)E\in {\cal B}_p({\Bbb R}) which is not in Bq(\Bbb R){\cal B}_q({\Bbb R}) for any q > pq>p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号