首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the optimal dividend problem for the compound Poisson risk model. We assume that dividends are paid to the shareholders according to an admissible strategy with dividend rate bounded by a constant. Our objective is to find a dividend policy so as to maximize the expected discounted value of dividends until ruin. We give sufficient conditions under which the optimal strategy is of threshold type.  相似文献   

2.
We study the optimal reinsurance policy and dividend distribution of an insurance company under excess of loss reinsurance. The objective of the insurer is to maximize the expected discounted dividends. We suppose that in the absence of dividend distribution, the reserve process of the insurance company follows a compound Poisson process. We first prove existence and uniqueness results for this optimization problem by using singular stochastic control methods and the theory of viscosity solutions. We then compute the optimal strategy of reinsurance, the optimal dividend strategy and the value function by solving the associated integro-differential Hamilton–Jacobi–Bellman Variational Inequality numerically.  相似文献   

3.
In this paper we consider a doubly discrete model used in Dickson and Waters (biASTIN Bulletin 1991; 21 :199–221) to approximate the Cramér–Lundberg model. The company controls the amount of dividends paid out to the shareholders as well as the capital injections which make the company never ruin in order to maximize the cumulative expected discounted dividends minus the penalized discounted capital injections. We show that the optimal value function is the unique solution of a discrete Hamilton–Jacobi–Bellman equation by contraction mapping principle. Moreover, with capital injection, we reduce the optimal dividend strategy from band strategy in the discrete classical risk model without external capital injection into barrier strategy , which is consistent with the result in continuous time. We also give the equivalent condition when the optimal dividend barrier is equal to 0. Although there is no explicit solution to the value function and the optimal dividend barrier, we obtain the optimal dividend barrier and the approximating solution of the value function by Bellman's recursive algorithm. From the numerical calculations, we obtain some relevant economical insights. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The paper studies a discrete counterpart of Gerber et al. (2006). The surplus of an insurance company (before dividends) is modeled as a time-homogeneous Markov chain with possible changes of size +1,0,−1,−2,−3,…. If a barrier strategy is applied for paying dividends, it is shown that the dividends-penalty identity holds. The identity expresses the expected present value of a penalty at ruin in terms of the expected discounted dividends until ruin and the expected present value of the penalty at ruin if no dividends are paid. For the problem of maximizing the difference between the expected discounted dividends until ruin and the expected present value of the penalty at ruin, barrier strategies play a prominent role. In some cases an optimal dividend barrier exists. The paper discusses in detail the special case where the distribution of the change in surplus does not depend on the current surplus (so that in the absence of dividends the surplus process has independent increments). A closed-form result for zero initial surplus is given, and it is shown how the relevant quantities can be calculated recursively. Finally, it is shown how optimal dividend strategies can be determined; typically, they are band strategies.  相似文献   

5.
We consider the dividend payments of a self-financing firm in the stochastic Ramsey model. The firm invests in capital stock and its production technology is given by the Cobb–Douglas function. Our objective is to maximize the expected present value of future real dividends subject to a positive constraint on the capital stock. We use the penalization method to obtain a solution for the variational inequality associated with the optimal growth problem and give a synthesis of the optimal dividend policy.  相似文献   

6.
The dual model with diffusion is appropriate for companies with continuous expenses that are offset by stochastic and irregular gains. Examples include research-based or commission-based companies. In this context, Bayraktar et al. (2013a) show that a dividend barrier strategy is optimal when dividend decisions are made continuously. In practice, however, companies that are capable of issuing dividends make dividend decisions on a periodic (rather than continuous) basis.In this paper, we consider a periodic dividend strategy with exponential inter-dividend-decision times and continuous monitoring of solvency. Assuming hyperexponential gains, we show that a periodic barrier dividend strategy is the periodic strategy that maximizes the expected present value of dividends paid until ruin. Interestingly, a ‘liquidation-at-first-opportunity’ strategy is optimal in some cases where the surplus process has a positive drift. Results are illustrated.  相似文献   

7.
In this paper, we consider an optimal financing and dividend control problem of an insurance company. The management of the insurance company controls the dividends payout, equity issuance and the excess-of-loss reinsurance policy. In our model, the dividends are assumed to be paid out continuously, which is of interest from the perspective of financial modeling. The objective is to find the strategy which maximizes the expected present values of the dividends payout minus the equity issuance up to the time of ruin. We solve the optimal control problem and identify the optimal strategy by constructing two categories of suboptimal control problems.  相似文献   

8.
We consider the optimal dividends problem under the Cramér–Lundberg model with exponential claim sizes subject to a constraint on the expected time of ruin. We introduce the dual problem and show that the complementary slackness conditions are satisfied, thus there is no duality gap. Therefore the optimal value function can be obtained as the point-wise infimum of auxiliary value functions indexed by Lagrange multipliers. We also present a series of numerical examples.  相似文献   

9.
Assume that an insurer can control it’s surplus by paying dividends, purchasing reinsurance and injecting capital. The exponential premium principle is used when pricing insurance contract instead of the expected value principle. Under the objective of maximizing the company’s value, we identify the optimal strategies with liquidation value and transaction costs. The results illustrate that the insurer should buy less reinsurance when the surplus increases, capital injection should be considered if and only if the transaction costs and the liquidation value are relatively low, dividends are paid according to barrier strategy if the dividend rate is unrestricted or threshold strategy if the dividend rate is bounded.  相似文献   

10.
We consider a risk process with stochastic return on investments and we are interested in expected present value of all dividends paid until ruin occurs when the company uses a simple barrier strategy, i.e. when it pays dividends whenever its surplus reaches a level b. It is shown that given the barrier b, this expected value can be found by solving a boundary value problem for an integro-differential equation. The solution is then found in two special cases; when return on investments is constant and the surplus generating process is compound Poisson with exponentially distributed claims, and also when both return on investments as well as the surplus generating process are Brownian motions with drift. Also in this latter case we are able to find the optimal barrier b*, i.e. the barrier that gives the highest expected present value of dividends. Parallell with this we treat the problem of finding the Laplace transform of the distribution of the time to ruin when a barrier strategy is employed, noting that the probability of eventual ruin is 1 in this case. The paper ends with a short discussion of the same problems when a time dependent barrier is employed.  相似文献   

11.
In the dual risk model, we consider the optimal dividend and capital injection problem, which involves a random time horizon and a ruin penalty. Both fixed and proportional costs from the transactions of capital injection are considered. The objective is to maximize the total value of the expected discounted dividends, and the penalized discounted both capital injections and ruin penalty during the horizon, which is described by the minimum of the time of ruin and an exponential random variable. The explicit solutions for optimal strategy and value function are obtained, when the income jumps follow a hyper-exponential distribution.Besides, some numerical examples are presented to illustrate our results.  相似文献   

12.
This paper considers a perturbed renewal risk process in which the inter-claim times have a phase-type distribution under a threshold dividend strategy. Integro-differential equations with certain boundary conditions for the moment-generating function and the mth moment of the present value of all dividends until ruin are derived. Explicit expressions for the expectation of the present value of all dividends until ruin are obtained when the claim amount distribution is from the rational family. Finally, we present an example.  相似文献   

13.
We consider a dividends model with a stochastic jump perturbed by diffusion. First, we prove that the expected discounted dividends function is twice continuously differentiable under the condition that the claim distribution function has continuous density. Then we show that the expected discounted dividends function under a barrier strategy satisfies some integro-differential equation of defective renewal type, and the solution of which can be explicitly expressed as a convolution formula. Finally, we study the Laplace transform of ruin time on the modified surplus process.  相似文献   

14.
This work develops asymptotically optimal dividend policies to maximize the expected present value of dividends until ruin.Compound Poisson processes with regime switching are used to model the surplus and the switching(a continuous-time controlled Markov chain) represents random environment and other economic conditions.Assuming the switching to be fast varying together with suitable conditions,it is shown that the system has a limit that is an average with respect to the invariant measure of a related Markov chain.Under simple conditions,the optimal policy of the limit dividend strategy is a threshold policy.Using the optimal policy of the limit system as a guide,feedback control for the original surplus is then developed.It is demonstrated that the constructed dividend policy is asymptotically optimal.  相似文献   

15.
We consider an optimization problem of an insurance company in the diffusion setting, which controls the dividends payout as well as the capital injections. To maximize the cumulative expected discounted dividends minus the penalized discounted capital injections until the ruin time, there is a possibility of (cheap or non-cheap) proportional reinsurance. We solve the control problems by constructing two categories of suboptimal models, one without capital injections and one with no bankruptcy by capital injection. Then we derive the explicit solutions for the value function and totally characterize the optimal strategies. Particularly, for cheap reinsurance, they are the same as those in the model of no bankruptcy.  相似文献   

16.
On a dual model with a dividend threshold   总被引:1,自引:0,他引:1  
In insurance mathematics, a compound Poisson model is often used to describe the aggregate claims of the surplus process. In this paper, we consider the dual of the compound Poisson model under a threshold dividend strategy. We derive a set of two integro-differential equations satisfied by the expected total discounted dividends until ruin and show how the equations can be solved by using only one of the two integro-differential equations. The cases where profits follow an exponential or a mixture of exponential distributions are then solved and the discussion for the case of a general profit distribution follows by the use of Laplace transforms. We illustrate how the optimal threshold level that maximizes the expected total discounted dividends until ruin can be obtained, and finally we generalize the results to the case where the surplus process is a more general skip-free downwards Lévy process.  相似文献   

17.
In this paper, we consider the compound Poisson risk model perturbed by diffusion with constant interest and a threshold dividend strategy. Integro-differential equations with certain boundary conditions for the moment-generation function and the nth moment of the present value of all dividends until ruin are derived. We also derive integro-differential equations with boundary conditions for the Gerber-Shiu functions. The special case that the claim size distribution is exponential is considered in some detail.  相似文献   

18.
研究保费和索赔到达率与余额相依的最优有界分红问题,目标是最大化破产前的累积期望折现分红。首先,给出一个策略是平稳马氏策略的充分必要条件,运用测度值生成元的理论得到测度值动态规划方程(DPE),并且给出了验证定理的证明。最后,讨论了测度值DPE和相应拟变分不等式(QVI)之间的关系,并且证明了最优分红策略为具有波段结构的平稳马氏策略。  相似文献   

19.
This work focuses on finding optimal barrier policy for an insurance risk model when the dividends are paid to the share holders according to a barrier strategy. A new approach based on stochastic optimization methods is developed. Compared with the existing results in the literature, more general surplus processes are considered. Precise models of the surplus need not be known; only noise-corrupted observations of the dividends are used. Using barrier-type strategies, a class of stochastic optimization algorithms are developed. Convergence of the algorithm is analyzed; rate of convergence is also provided. Numerical results are reported to demonstrate the performance of the algorithm.  相似文献   

20.
We consider the discrete risk model with exponential claim sizes. We derive the finite explicit elementary expression for the joint density function of three characteristics: the time of ruin, the surplus immediately before ruin, and the deficit at ruin. By using the explicit joint density function, we give a concise expression for the Gerber-Shiu function with no dividends. Finally, we obtain an integral equation for the Gerber-Shiu function under the barrier dividend strategy. The solution can be expressed as a combination of the Gerber-Shiu function without dividends and the solution of the corresponding homogeneous integral equation. This latter function is given clearly by means of the Gerber-Shiu function without dividends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号