首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
In this paper, impulsive control for master–slave synchronization schemes consisting of identical chaotic neural networks is studied. Impulsive control laws are derived based on linear static output feedback. A sufficient condition for global asymptotic synchronization of master–slave chaotic neural networks via output feedback impulsive control is established, in which synchronization is proven in terms of the synchronization errors between the full state vectors. An LMI-based approach for designing linear static output feedback impulsive control laws to globally asymptotically synchronize chaotic neural networks is discussed. With the help of LMI solvers, linear output feedback impulsive controllers can be easily obtained along with the bounds of the impulsive intervals for global asymptotic synchronization. The method is finally illustrated by numerical simulations.  相似文献   

2.
Synchronization of an energy resource system is investigated. Three linear control schemes are proposed to synchronize a chaotic energy resource system via the back-stepping method. This can be viewed as an improvement to the existing results of Tian et al. (2006) [14]. Because we use simpler controllers to realize a global asymptotical synchronization. In the first two schemes, the sufficient conditions for achieving synchronization of two identical energy resource systems using linear feedback control are derived by using Lyapunov stability theorem. In the third scheme, the synchronization condition is obtained by numerical method, in which only one state variable controller is contained. Finally, three numerical simulation examples are performed to verify these results.  相似文献   

3.
We consider globally exponentially attractive sets and synchronization control for a disk dynamo system. First, based on generalized Lyapunov function theory and the extremum principle of function, we derive some new 4D ellipsoid estimations and a polydisk domain estimation of the globally exponentially attractive set of a 4D disk dynamo system without existence assumptions. Our results improve existing results on the globally exponentially attractive set as special cases and can lead to a series of new estimations. Second, we propose linear feedback control with a single input or two inputs to realize globally exponential synchronization of two 4D disk dynamo systems using inequality techniques. Some new sufficient algebraic criteria for the globally exponential synchronization of two 4D disk dynamo systems are obtained analytically. The controllers designed here have a simple structure and less conservation. Finally, numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

4.
Global stabilization of a coupled dynamo system   总被引:1,自引:0,他引:1  
In this paper, by using feedback linearizing technique, we show that a coupled dynamo system can be considered as a cascade system. Moreover, this system satisfies the assumptions of global stabilization of cascade systems. Thus two kinds of continuous state feedback control laws are proposed to globally stabilize the coupled dynamo system to the equilibrium points. Simulation results are presented to verify our method.  相似文献   

5.
This paper proposes two schemes of synchronization of two four-scorll chaotic attractor, a simple global synchronization and adaptive synchronization in the presence of unknown system parameters. Based on Lyapunov stability theory and matrix measure, a simple generic criterion is derived for global synchronization of four-scorll chaotic attractor system with a unidirectional linear error feedback coupling. This methods are applicable to a large class of chaotic systems where only a few algebraic inequalities are involved. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization method.  相似文献   

6.
In this article, we investigate globally exponentially attractive sets and chaos synchronization for a hyperchaotic system, namely, Lorenz–Stenflo system. For this system, two ellipsoidal globally exponentially attractive sets are derived based on generalized Lyapunov function theory and the extremum principle of function. Furthermore, we propose linear feedback control with a one, two, three, and four inputs to realize globally exponential synchronization of two four‐dimesional hyperchaotic systems using inequality techniques. Numerical simulations are presented to show the effectiveness of the proposed synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 30–44, 2015  相似文献   

7.
In this article, we continue our study of a system described by a class of initial boundary value problem (IBVP) of the Korteweg-de Vries (KdV) equation and the KdV Burgers (KdVB) equation posed on a finite interval with nonhomogeneous boundary conditions. While the system is known to be locally well-posed (Kramer et al. , [2010]; Rivas et al. in Math. Control Relat. Fields 1:61–81, [2011]) and its small amplitude solutions are known to exist globally, it is not clear whether its large amplitude solutions would blow up in finite time or not. This problem is addressed in this article from control theory point of view: look for some appropriate feedback control laws (with boundary value functions as control inputs) to ensure that the finite time blow-up phenomena would never occur. In this article, a simple, but nonlinear, feedback control law is proposed and the resulting closed-loop system is shown not only to be globally well-posed, but also to be locally exponentially stable for the KdV equation and globally exponentially stable for the KdVB equation.  相似文献   

8.
This study concerns with the robust H synchronization problem for a class of nonlinear feedback control systems, which are subject to a vector-valued periodic nonlinearity in the feedback path. Under such synchronization configuration, the master system is assumed to be subject to an energy bounded input disturbance, and the slave one is under control. Sufficient conditions for controller design are proposed in terms of linear matrix inequalities by respectively utilizing the output feedback control and the dynamic output control strategies, such that the master system robustly synchronizes the slave one with a guaranteed H performance. The derived methods can be applied to the robust H synchronization of many practical systems, and effectiveness of the obtained results are demonstrated through a concrete example of phase-locked loops (PLL).  相似文献   

9.
Time-delay is an unavoidable phenomenon in active control systems. Measuring of the system states, processing of the measured signals, executing the control laws, conditioning and enforcing the control actions are the main reasons of time-delayed systems. This paper studies the vibration control of a horizontally suspended Jeffcott-rotor system having cubic and quadratic nonlinearities via time-delayed position-velocity controller. The intervals of the time-delays (τ1 and τ2) at which the system response is stable has been studied. The τ1  τ2 plane is constructed to illustrate the area at which the system solutions are stable. The influences of the controller gains on the stable-solutions area in τ1  τ2 plane are explored. The analysis revealed that the time-delay increases the vibration amplitudes and can destabilize the system solution in the case of negative position feedback control, while at positive position feedback control it improves the vibration suppression performance. The time-delays mechanism in stabilizing and destabilizing the dynamical systems is explained. Then, we proposed a simple and concrete method to determine the optimal value for time-delays that can improve the vibrations suppression efficiency. The acquired analytical results are confirmed numerically and the optimal working conditions of the system are concluded. Finally, a comparison with the papers that published previously is included.  相似文献   

10.
In this paper, new adaptive synchronous criteria for a general class of n-dimensional non-autonomous chaotic systems with linear and nonlinear feedback controllers are derived. By suitable separation between linear and nonlinear terms of the chaotic system, the phenomenon of stable chaotic synchronization can be achieved using an appropriate adaptive controller of feedback signals. This method can also be generalized to a form for chaotic synchronization or hyper-chaotic synchronization. Based on stability theory on non-autonomous chaotic systems, some simple yet less conservative criteria for global asymptotic synchronization of the autonomous and non-autonomous chaotic systems are derived analytically. Furthermore, the results are applied to some typical chaotic systems such as the Duffing oscillators and the unified chaotic systems, and the numerical simulations are given to verify and also visualize the theoretical results.  相似文献   

11.
This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies.  相似文献   

12.
We solve the problem of chaos suppression of Lü’s hyper-chaotic system via feedback control. We use only one control input and moreover the controller is a simple proportional feedback and uses the measurement of only one variable. We show that this simple control law suffices to stabilize the hyper-chaotic system to the zero equilibrium globally and asymptotically. We present stability proofs based on Lyapunov’s direct method and integration of solutions. As a corollary of our main result we draw the conclusion that the system is globally stabilizable by simply varying one parameter, when possible. Simulation experiments that show the effectiveness of our method are also presented.  相似文献   

13.
Synchronization of a chaotic finance system   总被引:1,自引:0,他引:1  
Synchronization strategies of a three-dimensional chaotic finance system are investigated in this paper. Based on Lyapunov stability theory and Routh-Hurwitz criteria, some effective controllers are designed for the global asymptotic synchronization on different conditions. When the system parameters are known, the hybrid feedback control and a method based on special matrix structure are adopted respectively, to realize the synchronization of the chaotic finance system. When the parameters are unknown, the active control is extended and introduced to realize the synchronization. Numerical simulations show the validity and feasibility of the synchronization schemes.  相似文献   

14.
In this paper, a simple adaptive feedback control is proposed for full and reduced-order synchronization of time-varying and strictly uncertain chaotic systems. Our method uses only one feedback gain with parameter adaptation law and converges very fast even in the presence of noise. For full synchronization, a drive-response system consisting of two second-order identical parametrically excited oscillators achieve global synchronization; while for reduced-order synchronization, the dynamical evolution of a second-order parametrically driven oscillator is synchronized with the projection of a third-order time-varying chaotic system. The effectiveness of our approach is demonstrated using numerical simulations.  相似文献   

15.
This paper deals with the problem of robust H state feedback stabilization for uncertain switched linear systems with state delay. The system under consideration involves time delay in the state, parameter uncertainties and nonlinear uncertainties. The parameter uncertainties are norm-bounded time-varying uncertainties which enter all the state matrices. The nonlinear uncertainties meet with the linear growth condition. In addition, the impulsive behavior is introduced into the given switched system, which results a novel class of hybrid and switched systems called switched impulsive control systems. Using the switched Lyapunov function approach, some sufficient conditions are developed to ensure the globally robust asymptotic stability and robust H disturbance attenuation performance in terms of certain linear matrix inequalities (LMIs). Not only the robustly stabilizing state feedback H controller and impulsive controller, but also the stabilizing switching law can be constructed by using the corresponding feasible solution to the LMIs. Finally, the effectiveness of the algorithms is illustrated with an example.  相似文献   

16.
A global adaptive output feedback control strategy is presented for a class of nonholonomic systems in generalized chained form with drift nonlinearity and unknown virtual control parameters. The purpose is to design a nonlinear output feedback switching controller such that the closed-loop system is globally asymptotically stable. By using the input-state scaling technique and an integrator back-stepping approach, an output feedback controller is given. A filter of observer gain is introduced for state and parameter estimates. Meanwhile, in order to avoid the over-parameters, a tuning function technique is utilized. A novel switching control strategy based on the output measurement of the first subsystem rather than time is used to overcome the uncontrollability of the x0-subsystem in the origin. The proposed controller can guarantee that all the system states globally converge to the origin, while other signals maintain bounded. The numerical simulation testifies the effectiveness.  相似文献   

17.
In this paper, a new projective lag synchronization is proposed, where a driven chaotic system synchronizes the past state of the driver up to a scaling factor α. An active control method is employed to design a controller to achieve the global synchronization of two identical chaotic systems. Based on Lyapunov stability theorem, a sufficient condition is then given for the asymptotical stability of the null solution of an error dynamics. The effectiveness of the proposed schemes is verified via numerical simulations.  相似文献   

18.
This paper investigates the exponential synchronization problem of coupled oscillators networks with disturbances and time-varying delays. On basis of graph theory and stochastic analysis theory, a feedback control law is designed to achieve exponential synchronization. By constructing a global Lyapunov function for error network, both pth moment exponential synchronization and almost sure exponential synchronization of drive-response networks are obtained. Finally, a numerical example is given to show the effectiveness of the proposed criteria.  相似文献   

19.
本文研究基于输出反馈的一类大型互联Holder连续非线性系统的全局实际镇定问题.通过构造每个子系统的状态观测器,并对观测器的状态作线性变换,得到分散输出反馈控制器.当输出反馈控制律作用于该系统时,闭环系统是全局实际稳定的.  相似文献   

20.
Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing’s oscillators. Physica A 2001;292:193–206], a system of periodically forced complex Duffing’s oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schrödinger equation has also been pointed out.In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号