首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the vibration behavior of a suspension bridge due to moving vehicle loads with vertical support motions caused by earthquake is studied. The suspension bridge system is presented here by two coupled nonlinear cable–beam equations aiming to describe both the dynamic characteristics for the supporting cable and the roadbed, respectively. The dynamic effect of traffic vehicles are modeled as a row of equidistant moving forces, while the earthquake movement is simulated as the vertical oscillation of boundary supports. The governing integro-differential equations are transferred into a set of ordinary differential equations, which can be solved analytically in the present study. Furthermore, the world’s largest designed suspended bridge – Messina Bridge – is examined (central span of length 3.3 km) and the modified Kobe earthquake records is applied to the calculations in order to validate the present study and the proposed methodology. As a result, the deformation of the cable produces more oscillations than that of the beam since the material property of the cable is more flexible. It is shown that the interaction of both the moving loads and the seismic forces can substantially amplify the response of long-span suspension bridge system especially in the vicinity of the end supports.  相似文献   

2.
In this paper, the vibration and stability of an axially moving beam is investigated. The finite element method with variable-domain elements is used to derive the equations of motion of an axially moving beam based on Rayleigh beam theory. Two kinds of axial motions including constant-speed extension deployment and back-and-forth periodical motion are considered. The vibration and stability of beams with these motions are investigated. For vibration analysis, direct time numerical integration, based on a Runge–Kutta algorithm, is used. For stability analysis of a beam with constant-speed axial extension deployment, eigenvalues of equations of motion are obtained to determine its stability, while Floquet theory is employed to investigate the stability of the beam with back-and-forth periodical axial motion. The effects of oscillation amplitude and frequency of periodical axial movement on the stability of the beam are discussed from the stability chart. Time histories are established to confirm the results from Floquet theory.  相似文献   

3.
A mathematical model for both axial and transverse motions of two beams with cylindrical cross-sections coupled through a joint is presented and analyzed. The motivation for this problem comes from the need to accurately model damping and joint dynamics for the next generation of inflatable/rigidizable space structures. Thermo-elastic damping is included in the two beams and the motions are coupled through a joint which includes an internal moment. Thermal response in each beam is modeled by two temperature fields. The first field describes the circumferentially averaged temperature along the beam, and is linked to the axial deformation of the beam. The second describes the circumferential variation and is coupled to transverse bending. The resulting equations of motion consist of four, second-order in time, partial differential equations, four, first-order in time, partial differential equations, four second order ordinary differential equations, and certain compatibility boundary conditions. The system is written as an abstract differential equation in an appropriate Hilbert space, consisting of function spaces describing the distributed beam deflections and temperature fields, and a finite-dimensional space that projects important features at the joint boundary. Semigroup theory is used to prove that the system is well-posed, and that with positive damping parameters the resulting semigroup is exponentially stable. Steady states are characterized and several numerical approximation results are presented. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
计算主梁绝对最大挠度的数学模型与0.618法   总被引:1,自引:0,他引:1  
纵横梁桥面系统中主梁的跨度较长,纵梁上直接承受的车队荷载数量多且数值大,主梁设计中绝对最大挠度的确定是关键内容.研究了一组平行车队荷载直接沿着纵梁移动时,主梁承受结点活载下绝对最大挠度数学模型的建立;并给出了相应的计算方法,以计算机为工具,适用于任意有限多个平行移动荷载作用工况,对于主梁的设计计算与安全评估,有一定的实用价值.  相似文献   

5.
In this paper we develop and analyze a mathematical model for combined axial and transverse motions of two Euler-Bernoulli beams coupled through a joint composed of two rigid bodies. The motivation for this problem comes from the need to accurately model damping and joints for the next generation of inflatable/rigidizable space structures. We assume Kelvin-Voigt damping in the two beams whose motions are coupled through a joint which includes an internal moment. The resulting equations of motion consist of four, second-order in time, partial differential equations, four second-order ordinary differential equations, and certain compatibility boundary conditions. The system is re-cast as an abstract second-order differential equation in an appropriate Hilbert space, consisting of function spaces describing the distributed beam deflections, and a finite-dimensional space that projects important features at the joint boundary. Semigroup theory is used to prove the system is well posed, and that with positive damping parameters the resulting semigroup is analytic and exponentially stable. The spectrum of the infinitesimal generator is characterized.  相似文献   

6.
This paper investigates bifurcation and chaos in transverse motion of axially accelerating viscoelastic beams. The Kelvin model is used to describe the viscoelastic property of the beam material, and the Lagrangian strain is used to account for geometric nonlinearity due to small but finite stretching of the beam. The transverse motion is governed by a nonlinear partial-differential equation. The Galerkin method is applied to truncate the partial-differential equation into a set of ordinary differential equations. When the Galerkin truncation is based on the eigenfunctions of a linear non-translating beam subjected to the same boundary constraints, a computation technique is proposed by regrouping nonlinear terms. The scheme can be easily implemented in practical computations. When the transport speed is assumed to be a constant mean speed with small harmonic variations, the Poincaré map is numerically calculated based on 4-term Galerkin truncation to identify dynamical behaviors. The bifurcation diagrams are present for varying one of the following parameter: the axial speed fluctuation amplitude, the mean axial speed and the beam viscosity coefficient, while other parameters are unchanged.  相似文献   

7.
A formulation is presented for steady-state dynamic responses of rotating bending-torsion coupled composite Timoshenko beams (CTBs) subjected to distributed and/or concentrated harmonic loadings. The separation of cross section's mass center from its shear center and the introduced coupled rigidity of composite material lead to the bending-torsion coupled vibration of the beams. Considering those two coupling factors and based on Hamilton's principle, three partial differential non-homogeneous governing equations of vibration with arbitrary boundary conditions are formulated in terms of the flexural translation, torsional rotation and angle rotation of cross section of the beams. The parameters for the damping, axial load, shear deformation, rotation speed, hub radius and so forth are incorporated into those equations of motion. Subsequently, the Green's function element method (GFEM) is developed to solve these equations in matrix form, and the analytical Green's functions of the beams are given in terms of piecewise functions. Using the superposition principle, the explicit expressions of dynamic responses of the beams under various harmonic loadings are obtained. The present solving procedure for Timoshenko beams can be degenerated to deal with for Rayleigh and Euler beams by specifying the values of shear rigidity and rotational inertia. Cantilevers with bending-torsion coupled vibration are given as examples to verify the present theory and to illustrate the use of the present formulation. The influences of rotation speed, bending-torsion couplings and damping on the natural frequencies and/or shape functions of the beams are performed. The steady-state responses of the beam subjected to external harmonic excitation are given through numerical simulations. Remarkably, the symmetric property of the Green's functions is maintained for rotating bending-torsion coupled CTBs, but there will be a slight deviation in the numerical calculations.  相似文献   

8.
将移动车辆模型化为运动的两自由度质量-弹簧-阻尼系统,道路模型化为立方非线性黏弹性地基上的弹性梁,并将路面不平度设定为简谐函数.通过受力分析,建立车路非线性耦合振动高阶偏微分方程.采用高阶Galerkin截断结合数值方法求解耦合系统的动态响应.首次研究不同截断阶数对车路耦合非线性振动动态响应的影响,确定Galerkin截断研究车路耦合振动的收敛性.研究结果表明,对于软土地基的沥青路面,耦合振动的动态响应,需要150阶以上的截断才能达到收敛效果.并通过高阶收敛的Galerkin截断研究了系统参数对车路耦合非线性振动动态响应的影响.  相似文献   

9.
微曲输流管道振动固有频率分析与仿真北大核心CSCD   总被引:2,自引:2,他引:0       下载免费PDF全文
首次建立了基于Timoshenko梁理论的微曲输流管道横向振动的动力学模型,并分析了流体流动影响下微曲管道横向自由振动的固有特征.采用广义Hamilton原理,导出了考虑流体影响的微曲管道横向振动的控制方程,通过Galerkin截断对控制方程离散化,再由广义本征值问题得到管道横向振动的固有频率,并研究了液体流速和弯曲幅度对管道横向固有振动特征的影响.发展了基于等效刚度和等效阻尼方法的考虑流体影响的微曲管道振动分析的有限元仿真计算方法,并通过有限元软件实现数值仿真,验证了Galerkin截断的分析结果以及所建立的Timoshenko微曲管道动力学模型的有效性.研究表明,流体的流速以及管道的弯曲幅度对管道横向振动固有频率均有显著影响.  相似文献   

10.
自然弯扭梁广义翘曲坐标的求解   总被引:1,自引:0,他引:1  
虞爱民  易明 《应用数学和力学》2004,25(10):1067-1075
提出了自然弯扭梁受复杂载荷作用时静力分析的一种理论方法,重点在于对控制方程的求解,其中考虑了与扭转有关的翘曲变形和横向剪切变形的影响.在特殊的情况下,可以比较容易地得到这些方程的解答,包括各种内力、应力、应变和位移的计算.算例给出了平面曲梁受水平和垂直分布载荷作用时广义翘曲坐标的求解方法.计算结果表明,求得的应力和位移的理论值和三维有限元结果非常接近.此外,该理论不限于具有双对称横截面的自然弯扭梁,同样可推广至具有一般横截面形状的情况.  相似文献   

11.
杨骁  王琛 《应用数学和力学》2007,28(12):1417-1424
在孔隙流体仅存在沿梁轴线方向扩散的假定下,建立了微观不可压饱和多孔弹性梁大挠度问题的非线性数学模型.利用Galerkin截断法,研究了固定端不可渗透、自由端可渗透的饱和多孔弹性悬臂梁在自由端突加集中载荷作用下的非线性弯曲,得到了梁骨架的挠度、弯矩以及孔隙流体压力等效力偶等的时间响应和沿轴线的分布.比较了大挠度非线性和小挠度线性理论的结果,揭示了两者间的差异.研究发现大挠度理论的结果小于相应的小挠度理论结果,并且,大挠度理论的结果趋于其稳态值的时间小于相应的小挠度理论结果趋于其稳态值的时间.  相似文献   

12.
An important class of proposed large space structures features a triangular truss backbone. In this paper we study thermomechanical behavior of a truss component; namely, a triangular frame consisting of two thin-walled circular beams connected through a joint. Transverse and axial mechanical motions of the beams are coupled though a mechanical joint. The nature of the external solar load suggests a decomposition of the temperature fields in the beams leading to two heat equations for each beam. One of these fields models the circumferential average temperature and is coupled to axial motions of the beam, while the second field accounts for a temperature gradient across the beam and is coupled to beam bending. The resulting system of partial and ordinary differential equations formally describes the coupled thermomechanical behavior of the joint–beam system. The main work is in developing an appropriate state-space form and then using semigroup theory to establish well-posedness and exponential stability.  相似文献   

13.
The vibration and stability of a simply supported beam are analyzed when the beam has an axially moving motion as well as a spinning motion. When a beam has spinning and axial motions, rotary inertia plays an important role on the lateral vibration. Compared to previous studies, the present study adopts the Rayleigh beam theory and derives more exact kinetic energy and equations of motion. The rotary inertia terms derived by the present study are compared to those of the previous studies. We investigate the natural frequencies between the present and previous studies. In addition, the critical speed and stability boundary for the spinning and moving speeds are also analyzed. It can be observed from the computed natural frequencies and dynamic responses that the present equations of motion are more reliable than the previous equations because the present equations fully consider the rotary inertia terms.  相似文献   

14.
This paper presents a method for determining the nonlinear dynamic responses of structures under moving loads. The load is considered as a four degrees-of-freedom system with linear suspensions and tires flexibility, and the structure is modeled as an Euler–Bernoulli beam with simply supported at both ends. The nonlinear dynamic interaction of the load–structure system is discussed, and Kelvin−Voigt material model is employed for the beam. The nonlinear partial differential equations of the dynamic interaction are derived by using the von Kármán nonlinear theory and D'Alembert's principle. Based on the Galerkin method, the partial differential equations of the system are transformed into nonlinear ordinary equations, which can be solved by using the Newmark method and Newton−Raphson iteration method. To validate the approach proposed in this paper, the comparison are performed using a moving mass and a moving oscillator as the excitation sources, and the investigations demonstrate good reliability.  相似文献   

15.
In the present study, the coupled nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed is investigated employing a numerical technique. The equations of motion for both the transverse and longitudinal motions are obtained using Newton’s second law of motion and the constitutive relations. A two-parameter rheological model of the Kelvin–Voigt energy dissipation mechanism is employed in the modelling of the viscoelastic beam material, in which the material time derivative is used in the viscoelastic constitutive relation. The Galerkin method is then applied to the coupled nonlinear equations, which are in the form of partial differential equations, resulting in a set of nonlinear ordinary differential equations (ODEs) with time-dependent coefficients due to the axial acceleration. A change of variables is then introduced to this set of ODEs to transform them into a set of first-order ordinary differential equations. A variable step-size modified Rosenbrock method is used to conduct direct time integration upon this new set of first-order nonlinear ODEs. The mean axial speed and the amplitude of the speed variations, which are taken as bifurcation parameters, are varied, resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are examined more precisely via plotting time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms (FFTs).  相似文献   

16.
Non-linearly parametric resonances of an axially moving viscoelastic sandwich beam are investigated in this paper. The beam is moving with a time-dependent velocity, namely a harmonically varied velocity about the mean velocity. The partial differential equation is discretized into nonlinear ordinary differential equations via the method of Galerkin truncation and then the steady-state response is obtained using the method of multiple scales, an approximate analytical method. The tuning equations are obtained by eliminating secular terms and the amplitude of the vibration is derived from the tuning equations expressed in polar form, and two bifurcation points are obtained as well. Additionally, the stability conditions of trivial and nontrivial solutions are analyzed using the Routh–Hurwitz criterion. Eventually, the effects of various parameters such as the thickness of core layer, mean velocity, initial tension, and the amplitude of axially moving velocity on amplitude–frequency response curves and unstable regions are investigated.  相似文献   

17.
Interaction curves for vibration and buckling of thin-walled composite box beams with arbitrary lay-ups under constant axial loads and equal end moments are presented. This model is based on the classical lamination theory, and accounts for all the structural coupling coming from material anisotropy. The governing differential equations are derived from the Hamilton’s principle. The resulting coupling is referred to as triply flexural–torsional coupled vibration and buckling. A displacement-based one-dimensional finite element model with seven degrees of freedoms per node is developed to solve the problem. Numerical results are obtained for thin-walled composite box beams to investigate the effects of axial force, bending moment, fiber orientation on the buckling loads, buckling moments, natural frequencies and corresponding vibration mode shapes as well as axial-moment–frequency interaction curves.  相似文献   

18.
A method based on Green's functions is proposed for the analysis of the steady-state dynamic response of bending-torsion coupled Timoshenko beam subjected to distributed and/or concentrated loadings. Damping effects on the bending and torsional directions are taken into account in the vibration equations. The elastic boundary conditions with bending-torsion coupling and damping effects are derived and the classical boundary conditions can be obtained by setting the values of specific stiffness parameters of the artificial springs. The Laplace transform technology is employed to work out the Green's functions for the beam with arbitrary boundary conditions. The Green's functions are obtained for the beam subject to external lateral force and external torque, respectively. Coupling effects between bending and torsional vibrations of the beam can be studied conveniently through these analytical Green's functions. The direct expressions of the steady-state responses with various loadings are obtained by using the superposition principle. The present Green's functions for the Timoshenko beam can be reduced to those for Euler–Bernoulli beam by setting the values of shear rigidity and rotational inertia. In order to demonstrate the validity of the Green's functions proposed, results obtained for special cases are given for a comparison with those given in the literature and they agree with each other exactly. The influences of external loading frequency and eccentricity on Green's functions of bending-torsion coupled Timoshenko beam are investigated in terms of the numerical results for both simply supported and cantilever beams. Moreover, the symmetric property of the Green's functions and the damping effects on the amplitude of Green's functions of the beam are discussed particularly.  相似文献   

19.
Forced vibration analysis of curved beams on two-parameter elastic foundation subjected to impulsive loads are investigated. The Timoshenko beam theory is adopted in the derivation of the governing equation. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method. The solutions obtained are transformed to the real space using the Durbin’s numerical inverse Laplace transform method. The static and forced vibration analysis of circular beams on elastic foundation are analyzed through various examples.  相似文献   

20.
This study is intended to investigate piezoelectric energy harvesting from vibrations of a beam induced by multi-moving loads. Various multi-moving loads are analyzed by considering various parameters. The system of equations for electro-mechanical materials is derived by using the generalized Hamilton's principle under the assumptions of the Euler–Bernoulli beam theory. The electromechanical behavior of piezoelectric harvesters in a unimorph configuration is analyzed using finite element method. The Newmark's explicit integration technique is adopted for the transient analysis. The predictions of the results of the finite element models are verified by that of the available solutions. The effects of piezoelectric bonding location, velocity and number of moving loads as well as time lags between moving loads on the produced power are investigated. The numerical results show that the investigated parameters have significant effects on the energy harvesting from a vibration of beams under the action of multi-moving loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号