首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a condition on a pair of the Alexander polynomials of knots which are realizable by a pair of knots with Gordian distance one. We show that there are infinitely many mutually disjoint infinite subsets in the set of the Alexander polynomials of knots such that every pair of distinct elements in each subset is not realizable by any pair of knots with Gordian distance one. As one of the subsets, we have an infinite set containing the Alexander polynomials of the trefoil knot and the figure eight knot. We also show that every pair of distinct Alexander polynomials such that one is the Alexander polynomial of a slice knot is realizable by a pair of knots of Gordian distance one, so that every pair of distinct elements in the infinite subset consisting of the Alexander polynomials of slice knots is realizable by a pair of knots with Gordian distance one. These results solve problems given by Y. Nakanishi and by I. Jong.  相似文献   

2.
In the previous paper, the author gave linear inequalities on the coefficients of the Alexander polynomials of alternating knots of genus two, which are best possible as linear inequalities on the coefficients of them. In this paper, we give infinitely many Alexander polynomials which satisfy the linear inequalities, but they are not realized by alternating knots.  相似文献   

3.
4.
Taehee Kim 《Topology》2006,45(3):543-566
A knot in the 3-sphere is called doubly slice if it is a slice of an unknotted 2-sphere in the 4-sphere. We give a bi-sequence of new obstructions for a knot being doubly slice. We construct it following the idea of Cochran-Orr-Teichner's filtration of the classical knot concordance group. This yields a bi-filtration of the monoid of knots (under the connected sum operation) indexed by pairs of half integers. Doubly slice knots lie in the intersection of this bi-filtration. We construct examples of knots which illustrate the non-triviality of this bi-filtration at all levels. In particular, these are new examples of algebraically doubly slice knots that are not doubly slice, and many of these knots are slice. Cheeger-Gromov's von Neumann rho invariants play a key role to show non-triviality of this bi-filtration. We also show some classical invariants are reflected at the initial levels of this bi-filtration, and obtain a bi-filtration of the double concordance group.  相似文献   

5.
This paper explicitly provides two exhaustive and infinite families of pairs (M,k), where M is a lens space and k is a non-hyperbolic knot in M, which produces a manifold homeomorphic to M, by a non-trivial Dehn surgery. Then, we observe the uniqueness of such knot in such lens space, the uniqueness of the slope, and that there is no preserving homeomorphism between the initial and the final M's. We obtain further that Seifert fibered knots, except for the axes, and satellite knots are determined by their complements in lens spaces. An easy application shows that non-hyperbolic knots are determined by their complement in atoroidal and irreducible Seifert fibered 3-manifolds.  相似文献   

6.
We consider the following problem from the Kirby's list (Problem 3.25): Let K be a knot in and M(K) its 2-fold branched covering space. Describe the equivalence class [K] of K in the set of knots under the equivalence relation if is homeomorphic to . It is known that there exist arbitrarily many different hyperbolic knots with the same 2-fold branched coverings, due to mutation along Conway spheres. Thus the most basic class of knots to investigate are knots which do not admit Conway spheres. In this paper we solve the above problem for knots which do not admit Conway spheres, in the following sense: we give upper bounds for the number of knots in the equivalence class [K] of a knot K and we describe how the different knots in the equivalence class of K are related. Received: 3 August 1998 / in final form: 17 June 1999  相似文献   

7.
Michael Eisermann 《Topology》2004,43(5):1211-1229
This article examines the relationship between 3-manifold topology and knot invariants of finite type. We prove that in every Whitehead manifold there exist knots that cannot be distinguished by Vassiliev invariants. If, on the other hand, Vassiliev invariants distinguish knots in each homotopy sphere, then the Poincaré conjecture is true (i.e. every homotopy 3-sphere is homeomorphic to the standard 3-sphere).  相似文献   

8.
Kondo and Sakai independently gave a characterization of Alexander polynomials for knots which are transformed into the trivial knot by a single crossing change. The first author gave a characterization of Alexander polynomials for knots which are transformed into the trefoil knot (and into the figure-eight knot) by a single crossing change. In this note, we will give a characterization of Alexander polynomials for knots which are transformed into the 10132 knot (and into the (5,2)-torus knot) by a single crossing change. Moreover, this method can be applied for knots with monic Alexander polynomials.  相似文献   

9.
In this paper, we describe the twisted Alexander polynomial of twist knots for nonabelian SL(2,C)-representations and investigate in detail the coefficient of the highest degree term as a function on the representation space of the knot group. In particular, we introduce the notion of monic representation and discuss its relation to the fiberedness of knots.  相似文献   

10.
We provide new information about the structure of the abelian group of topological concordance classes of knots in $S^3$. One consequence is that there is a subgroup of infinite rank consisting entirely of knots with vanishing Casson-Gordon invariants but whose non-triviality is detected by von Neumann signatures.  相似文献   

11.
In this paper, we characterize closed incompressible surfaces of genus two in the complements of 3-bridge knots and links. This characterization includes that of essential 2-string tangle decompositions for 3-bridge knots and links.  相似文献   

12.
We present a practical algorithm to determine the minimal genus of non-orientable spanning surfaces for 2-bridge knots, called the crosscap numbers. We will exhibit a table of crosscap numbers of 2-bridge knots up to 12 crossings (all 362 of them).  相似文献   

13.
We say a knot k in the 3-sphere S3 has PropertyIE if the infinite cyclic cover of the knot exterior embeds into S3. Clearly all fibred knots have Property IE.There are infinitely many non-fibred knots with Property IE and infinitely many non-fibred knots without property IE. Both kinds of examples are established here for the first time. Indeed we show that if a genus 1 non-fibred knot has Property IE, then its Alexander polynomial Δk(t) must be either 1 or 2t2−5t+2, and we give two infinite families of non-fibred genus 1 knots with Property IE and having Δk(t)=1 and 2t2−5t+2 respectively.Hence among genus 1 non-fibred knots, no alternating knot has Property IE, and there is only one knot with Property IE up to ten crossings.We also give an obstruction to embedding infinite cyclic covers of a compact 3-manifold into any compact 3-manifold.  相似文献   

14.
In this paper, applying Chebyshev polynomials we give a basic proof of the irreducibility over the complex number field of the defining polynomial of SL2(C)-character variety of twist knots in infinitely many cases. The irreducibility, combined with a result in the paper of M. Boileau, S. Boyer, A.W. Reid and S. Wang in 2010, shows the minimality of infinitely many twist knots for a partial order on the set of prime knots defined by using surjective group homomorphisms between knot groups. In Appendix B, we also give a straightforward proof of the result of Boileau et al.  相似文献   

15.
The first step in tabulating the non-composite knots with n crossings is the tabulation of the non-singular plane projections of such knots, where two (piecewise linear) projections are regarded as equivalent, or in the same class, if they agree up to homeomorphism of the extended plane, i.e. two-sphere. This first step is here reduced to a simple algorithm suitable for computer use.  相似文献   

16.
We propose a version of the volume conjecture that would relate a certain limit of the colored Jones polynomials of a knot to the volume function defined by a representation of the fundamental group of the knot complement to the special linear group of degree two over complex numbers. We also confirm the conjecture for the figure-eight knot and torus knots. This version is different from S. Gukov's because of a choice of polarization.  相似文献   

17.
The geometric representation of a knot is not too dissimilar from a graph and this interaction has helped mathematicians to solve many problems. In this paper, we apply graph theory tools to study the classification of virtual knots and links. We define virtual planar graphs and compute virtual path width of an associated graph of a virtual link. We show that the virtual path width of an associated graph is equal to the virtual bridge number of a pseudo prime knot.  相似文献   

18.
We show that hyperbolic volume can be viewed as a quandle cocycle. It gives us a criterion for determining invertibility and positive/negative amphicheirality of hyperbolic knots.  相似文献   

19.
In this paper, we obtain a necessary and sufficient condition for the existence of 1-dominations between two Montesinos knots with at least 6 rational tangles.  相似文献   

20.
We study the behavior of Legendrian and transverse knots under the operation of connected sums. As a consequence we show that there exist Legendrian knots that are not distinguished by any known invariant. Moreover, we classify Legendrian knots in some non-Legendrian-simple knot types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号