首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
曾燕  李仲飞 《运筹学学报》2010,14(2):106-118
现实中,保险公司的投资行为会受到《保险法》及其自身风险管理条例的约束; 另外,保险公司必须提存一定数量的准备金以满足监管规定.鉴于此,本文将保险公司盈余首达最低准备金水平的时刻定义为``破产”时刻,以最小化``破产”概率为目标, 假设保险公司的盈余过程服从扩散模型,其可投资无风险资产与一种风险资产且投资受线性约束.我们通过求解相应的HJB方程得到了值函数与最优投资策略的解析式并给出了经济解释与数值算例.  相似文献   

2.
本文对索赔次数为复合Poisson-Geometric过程的风险模型,在保险公司的盈余可以投资于风险资产,以及索赔购买比例再保险的策略下,研究使得破产概率最小的最优投资和再保险策略.通过求解相应的Hamilton-Jacobi-Bellman方程,得到使得破产概率最小的最优投资和比例再保险策略,以及最小破产概率的显示表达式.  相似文献   

3.
本文在保险公司盈余过程服从Cramer-Lundberg模型时,研究了在破产概率最小限制下一般再保险策略的选择问题.利用动态规划的方法,得到了破产概率满足的HJB方程,并证明了方程解的存在性与识别定理;并对最优策略下的破产概率做了近似估计.特别,当理赔服从指数分布时,对比例再保险得到了破产概率的估计式.  相似文献   

4.
为规避风险的巨大波动,保险公司会将承保的理赔进行分保,即再保险.假定再保险公司采用方差保费准则从保险公司收取保费.应用扩散逼近模型,刻画了保险公司有再保险控制下的资本盈余.另外,保险公司的盈余允许投资到利率、股票等金融市场.通过控制再保险及投资组合策略,研究了最小破产概率.应用动态规划方法(Hamilton-Jacobi-Bellman方程),对最小破产概率、最优再保险及投资组合策略给出了明晰解答,并给出了数值直观分析.  相似文献   

5.
为规避风险的巨大波动,保险公司会将承保的理赔进行分保,即再保险.假定再保险公司采用方差保费准则从保险公司收取保费.应用扩散逼近模型,刻画了保险公司有再保险控制下的资本盈余.另外,保险公司的盈余允许投资到利率、股票等金融市场.通过控制再保险及投资组合策略,研究了最小破产概率.应用动态规划方法(Hamilton-Jacobi-Bellman方程),对最小破产概率、最优再保险及投资组合策略给出了明晰解答,并给出了数值直观分析.  相似文献   

6.
本文假设保险公司可通过分红、注资和购买溢额再保险三种方式动态地控制盈余过程.同时控制过程会消耗交易费用:再保险合同是"不便宜的";分红需要纳税;而注资需要比例注资成本和固定注资成本.在最大化公司价值目标下,本文给出了最优的控制策略,并分析了交易费用和任意破产终端值的影响.结果表明,当交易费用较低且破产终端值相对较小时,注资可能最优,应当按照Barrier策略进行分红;当公司盈余增加时,应当减少再保险购买量.  相似文献   

7.
研究最小化保险公司破产概率的最优多期比例再保险策略,给出了保险公司最小破产概率的一个递归表达式,证明了可用动态规划方法求解此类问题.在此基础上,我们推导出最优多期比例再保险策略的几个必要条件.  相似文献   

8.
杨鹏  林祥 《经济数学》2011,28(2):29-33
研究了保险公司的最优投资和再保险问题.保险公司的盈余通过跳-扩散风险模型来模拟,可以把盈余的一部分投资到金融市场,金融市场由一个无风险资产和n个风险资产组成,并且保险公司还可以购买比例再保险;在买卖风险资产时,考虑了交易费用.通过随机控制的理论,获得了最优策略和值函数的显示解.  相似文献   

9.
在保险公司既可以做证券(股票和债券)投资,同时又采取比例再保险策略的情况下,通过对经典的Cramér-Lundberg保险公司盈余过程模型的连续扩散近似,利用动态规划原理分别得出了在破产概率最小和终值期望效用最大两种目标函数下,保险公司的最优投资和最优再保策略的显式解和对应的目标函数值.对两种目标函数下的最优策略做了比较研究.  相似文献   

10.
站在保险公司管理者的角度, 考虑存在不动产项目投资机会时保险公司的再保险--投资策略问题. 假定保险公司可以投资于不动产项目、风险证券和无风险证券, 并通过比例再保险控制风险, 目标是最小化保险公司破产概率并求得相应最佳策略, 包括: 不动产项目投资时机、 再保险比例以及投资于风险证券的金额. 运用混合随机控制-最优停时方法, 得到最优值函数及最佳策略的显式解. 结果表明, 当且仅当其盈余资金多于某一水平(称为投资阈值)时保险公司投资于不动产项目. 进一步的数值算例分析表明: (a)~不动产项目投资的阈值主要受项目收益率影响而与投资金额无明显关系, 收益率越高则投资阈值越低; (b)~市场环境较好(牛市)时项目的投资阈值降低; 反之, 当市场环境较差(熊市)时投资阈值提高.  相似文献   

11.
In this paper, the surplus of an insurance company is modeled by a Markovian regimeswitching diffusion process. The insurer decides the proportional reinsurance and investment so as to increase revenue. The regime-switching economy consists of a fixed interest security and several risky shares. The optimal proportional reinsurance and investment strategies with no short-selling constraints for maximizing an exponential utility on terminal wealth are obtained.  相似文献   

12.
In this paper, we investigate the optimal time-consistent investment–reinsurance strategies for an insurer with state dependent risk aversion and Value-at-Risk (VaR) constraints. The insurer can purchase proportional reinsurance to reduce its insurance risks and invest its wealth in a financial market consisting of one risk-free asset and one risky asset, whose price process follows a geometric Brownian motion. The surplus process of the insurer is approximated by a Brownian motion with drift. The two Brownian motions in the insurer’s surplus process and the risky asset’s price process are correlated, which describe the correlation or dependence between the insurance market and the financial market. We introduce the VaR control levels for the insurer to control its loss in investment–reinsurance strategies, which also represent the requirement of regulators on the insurer’s investment behavior. Under the mean–variance criterion, we formulate the optimal investment–reinsurance problem within a game theoretic framework. By using the technique of stochastic control theory and solving the corresponding extended Hamilton–Jacobi–Bellman (HJB) system of equations, we derive the closed-form expressions of the optimal investment–reinsurance strategies. In addition, we illustrate the optimal investment–reinsurance strategies by numerical examples and discuss the impact of the risk aversion, the correlation between the insurance market and the financial market, and the VaR control levels on the optimal strategies.  相似文献   

13.
In this paper, we study the optimal proportional reinsurance and investment strategy for an insurer that only has partial information at its disposal, under the criterion of maximizing the expected utility of the terminal wealth. We assume that the surplus of the insurer is governed by a jump diffusion process, and that reinsurance is used by the insurer to reduce risk. In addition, the insurer can invest in financial markets. We give a characterization for the optimal strategy within a non-Markovian setting. Malliavin calculus for Lévy processes is used for the analysis.  相似文献   

14.
This paper deals with the optimal reinsurance strategy from an insurer’s point of view. Our objective is to find the optimal policy that maximises the insurer’s survival probability. To meet the requirement of regulators and provide a tool to risk management, we introduce the dynamic version of Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR) and worst-case CVaR (wcCVaR) constraints in diffusion model and the risk measure limit is proportional to company’s surplus in hand. In the dynamic setting, a CVaR/wcCVaR constraint is equivalent to a VaR constraint under a higher confidence level. Applying dynamic programming technique, we obtain closed form expressions of the optimal reinsurance strategies and corresponding survival probabilities under both proportional and excess-of-loss reinsurance. Several numerical examples are provided to illustrate the impact caused by dynamic VaR/CVaR/wcCVaR limit in both types of reinsurance policy.  相似文献   

15.
In this paper, based on equilibrium control law proposed by Björk and Murgoci (2010), we study an optimal investment and reinsurance problem under partial information for insurer with mean–variance utility, where insurer’s risk aversion varies over time. Instead of treating this time-inconsistent problem as pre-committed, we aim to find time-consistent equilibrium strategy within a game theoretic framework. In particular, proportional reinsurance, acquiring new business, investing in financial market are available in the market. The surplus process of insurer is depicted by classical Lundberg model, and the financial market consists of one risk free asset and one risky asset with unobservable Markov-modulated regime switching drift process. By using reduction technique and solving a generalized extended HJB equation, we derive closed-form time-consistent investment–reinsurance strategy and corresponding value function. Moreover, we compare results under partial information with optimal investment–reinsurance strategy when Markov chain is observable. Finally, some numerical illustrations and sensitivity analysis are provided.  相似文献   

16.
This article studies the optimal proportional reinsurance and investment problem under a constant elasticity of variance(CEV) model.Assume that the insurer’s surplus process follows a jump-diffusion process,the insurer can purchase proportional reinsurance from the reinsurer via the variance principle and invest in a risk-free asset and a risky asset whose price is modeled by a CEV model.The diffusion term can explain the uncertainty associated with the surplus of the insurer or the additional small claims.The objective of the insurer is to maximize the expected exponential utility of terminal wealth.This optimization problem is studied in two cases depending on the diffusion term’s explanation.In all cases,by using techniques of stochastic control theory,closed-form expressions for the value functions and optimal strategies are obtained.  相似文献   

17.
In this paper, we study a robust optimal investment and reinsurance problem for a general insurance company which contains an insurer and a reinsurer. Assume that the claim process described by a Brownian motion with drift, the insurer can purchase proportional reinsurance from the reinsurer. Both the insurer and the reinsurer can invest in a financial market consisting of one risk-free asset and one risky asset whose price process is described by the Heston model. Besides, the general insurance company’s manager will search for a robust optimal investment and reinsurance strategy, since the general insurance company faces model uncertainty and its manager is ambiguity-averse in our assumption. The optimal decision is to maximize the minimal expected exponential utility of the weighted sum of the insurer’s and the reinsurer’s surplus processes. By using techniques of stochastic control theory, we give sufficient conditions under which the closed-form expressions for the robust optimal investment and reinsurance strategies and the corresponding value function are obtained.  相似文献   

18.
This paper is devoted to the study of optimization of investment, consumption and proportional reinsurance for an insurer with option type payoff at the terminal time under the criterion of exponential utility maximization. The surplus process of the insurer and the financial risky asset process are assumed to be diffusion processes driven by Brownian motions which are non-Markovian in general. Very general constraints are imposed on the investment and the proportional reinsurance processes. Based on the martingale optimization principle, we use BSDE and BMO martingale techniques to derive the optimal strategy and the optimal value function. Some interesting particular cases are studied in which the explicit expressions for the optimal strategy are given by using the Malliavin calculus.  相似文献   

19.
In this paper, we study the problem of optimal investment and proportional reinsurance coverage in the presence of inside information. To be more precise, we consider two firms: an insurer and a reinsurer who are both allowed to invest their surplus in a Black–Scholes‐type financial market. The insurer faces a claims process that is modeled by a Brownian motion with drift and has the possibility to reduce the risk involved with this process by purchasing proportional reinsurance coverage. Moreover, the insurer has some extra information at her disposal concerning the future realizations of her claims process, available from the beginning of the trading interval and hidden from the reinsurer, thus introducing in this way inside information aspects to our model. The optimal investment and proportional reinsurance decision for both firms is determined by the solution of suitable expected utility maximization problems, taking into account explicitly their different information sets. The solution of these problems also determines the reinsurance premia via a partial equilibrium approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The optimal reinsurance contract is investigated from the perspective of an insurer who would like to minimise its risk exposure under Solvency II. Under this regulatory framework, the insurer is exposed to the retained risk, reinsurance premium and change in the risk margin requirement as a result of reinsurance. Depending on how the risk margin corresponding to the reserve risk is calculated, two optimal reinsurance problems are formulated. We show that the optimal reinsurance policy can be in the form of two layers. Further, numerical examples illustrate that the optimal two-layer reinsurance contracts are only slightly different under these two methodologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号