首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
A process of second order is constructed for the solution of nonlinear operator equations which is an analog of the method of continuation of solution with respect to the parameter. For each value of the parameter the Newton-Kantorovich iteration formula is applied only once in all. The quadratic convergence of the process is ensured by the specification of the parameter by a special formula. The process under consideration enables us to avoid the singular points of the derivative of the nonlinear operator on the left-hand side of the operator equation.Translated from Matematicheskie Zametki, Vol. 23, No. 4, pp. 601–606, April, 1978.  相似文献   

2.
The second derivative of a map into a Riemannian manifold is given by a nonlinear differential operator. We study minimizers and critical points of the L 2-norm of this second derivative. We show existence of minimizers with the direct method and we prove a partial regularity result.  相似文献   

3.
The convergence of a time discretisation with variable time steps is shown for a class of doubly nonlinear evolution equations of second order. This also proves existence of a weak solution. The operator acting on the zero-order term is assumed to be the sum of a linear, bounded, symmetric, strongly positive operator and a nonlinear operator that fulfils a certain growth and a Hölder-type continuity condition. The operator acting on the first-order time derivative is a nonlinear hemicontinuous operator that fulfils a certain growth condition and is (up to some shift) monotone and coercive.  相似文献   

4.
For an equation with a nonlinear differentiable operator acting in a Hilbert space, we study a two-stage method of construction of a regularizing algorithm. First, we use the Lavrentiev regularization scheme. Then we apply to the regularized equation either Newton’s method or nonlinear analogs of α-processes: the minimum error method, the minimum residual method, and the steepest descent method. For these processes, we establish the linear convergence rate and the Fejér property of iterations. Two cases are considered: when the operator of the problem is monotone and when the operator is finite-dimensional and its derivative has nonnegative spectrum. For the two-stage method with a monotone operator, we give an error bound, which has optimal order on the class of sourcewise representable solutions. In the second case, the error of the method is estimated by means of the residual. The proposed methods and their modified analogs are implemented numerically for three-dimensional inverse problems of gravimetry and magnetometry. The results of the numerical experiment are discussed.  相似文献   

5.
In this paper we develop the multilevel augmentation method for solving nonlinear operator equations of the second kind and apply it to solving the one-dimensional sine-Gordon equation. We first give a general setting of the multilevel augmentation method for solving the second kind nonlinear operator equations and prove that the multilevel augmentation method preserves the optimal convergence order of the projection method while reducing computational cost significantly. Then we describe the semi-discrete scheme and the fully-discrete scheme based on multiscale methods for solving the sine-Gordon equation, and apply the multilevel augmentation method to solving the discrete equation. A complete analysis for convergence order is proposed. Finally numerical experiments are presented to confirm the theoretical results and illustrate the efficiency of the method.  相似文献   

6.
We consider a numerical solution method for the inverse problem of quantum scattering theory based on Tikhonov's regularization method and Newton's method for solving a nonlinear operator equation of second kind.Translated from Vychislitel'naya Matematika i Matematicheskoe Obespechenie EVM, pp. 52–55, 1985.  相似文献   

7.
《Optimization》2012,61(3):333-351
The paper considers two cases of variational inequality problems. The first case involves an affine monotone operator over a convex set defined by a separation oracle. Aninterior-point algorithm that mixes an interior cutting plane method and a short-step path-following method will be presented. Its complexity will be established. The second case is an extension of the first and involves a nonlinear monotone operator defined over the same type of convex set. The algorithm for the latter case is different from the former one only in the path-following stage  相似文献   

8.
Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equations. These methods however require an evaluation of the second Fréchet-derivative at each step which means a number of function evaluations proportional to the cube of the dimension of the space. To reduce the computational cost we replace the second Fréchet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient conditions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton’s method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.  相似文献   

9.
This paper is devoted to proving the existence and uniqueness of solutions to Cauchy type problems for fractional differential equations with composite fractional derivative operator on a finite interval of the real axis in spaces of summable functions. An approach based on the equivalence of the nonlinear Cauchy type problem to a nonlinear Volterra integral equation of the second kind and applying a variant of the Banach’s fixed point theorem to prove uniqueness and existence of the solution is presented. The Cauchy type problems for integro-differential equations of Volterra type with composite fractional derivative operator, which contain the generalized Mittag-Leffler function in the kernel, are considered. Using the method of successive approximation, and the Laplace transform method, explicit solutions of the open problem proposed by Srivastava and Tomovski (2009) [11] are established in terms of the multinomial Mittag-Leffler function.  相似文献   

10.
In this paper, the convergence of a Stirling-like method used for finding a solution for a nonlinear operator in a Banach space is examined under the relaxed assumption that the first Fréchet derivative of the involved operator satisfies the Hölder continuity condition. Many results exist already in the literature to cover the stronger case when the second Fréchet derivative of the involved operator satisfies the Lipschitz/Hölder continuity condition. Our convergence analysis is done by using recurrence relations. The error bounds and the existence and uniqueness regions for the solution are obtained. Finally, two numerical examples are worked out to show that our convergence analysis leads to better error bounds and existence and uniqueness regions for the fixed points.  相似文献   

11.
丛文相 《应用数学》1995,8(4):389-395
本文针对地震勘探中提出一类重要的2-D波动方程反演问题,通过定义一个新的非线性算子将2-D波动方程的反演问题归结为一个新的非线性算子方程,详细讨论了非线性算子的性质,给出了求解反问题的迭代方法,并证明了这种迭代方法的收敛性。  相似文献   

12.
In this paper, the semilocal convergence of a third order Stirling-like method used to find fixed points of nonlinear operator equations in Banach spaces is established under the assumption that the first Fréchet derivative of the involved operator satisfies ??-continuity condition. It turns out that this convergence condition is weaker than the Lipschitz and the H?lder continuity conditions on first Fréchet derivative of the involved operator. The importance of our work lies in the fact that numerical examples can be given to show that our approach is successful even in cases where Lipschitz and H?lder continuity conditions on first Fréchet derivative fail. It also avoids the evaluation of second order Fréchet derivative which is difficult to compute at times. A priori error bounds along with the domains of existence and uniqueness of a fixed point are derived. The R-order of the method is shown to be equal to (2p?+?1) for p????(0,1]. Finally, two numerical examples involving nonlinear integral equations are worked out to show the efficacy of our approach.  相似文献   

13.
We present a new approach to study the convergence of Newton's method in Banach spaces, which relax the conditions appearing in the usual studies. The approach is based on the bound required for the second derivative of the operator involved. An application to a nonlinear integral equation is presented.  相似文献   

14.
Summary In this paper we apply the coupling of boundary integral and finite element methods to solve a nonlinear exterior Dirichlet problem in the plane. Specifically, the boundary value problem consists of a nonlinear second order elliptic equation in divergence form in a bounded inner region, and the Laplace equation in the corresponding unbounded exterior region, in addition to appropriate boundary and transmission conditions. The main feature of the coupling method utilized here consists in the reduction of the nonlinear exterior boundary value problem to an equivalent monotone operator equation. We provide sufficient conditions for the coefficients of the nonlinear elliptic equation from which existence, uniqueness and approximation results are established. Then, we consider the case where the corresponding operator is strongly monotone and Lipschitz-continuous, and derive asymptotic error estimates for a boundary-finite element solution. We prove the unique solvability of the discrete operator equations, and based on a Strang type abstract error estimate, we show the strong convergence of the approximated solutions. Moreover, under additional regularity assumptions on the solution of the continous operator equation, the asymptotic rate of convergenceO (h) is obtained.The first author's research was partly supported by the U.S. Army Research Office through the Mathematical Science Institute of Cornell University, by the Universidad de Concepción through the Facultad de Ciencias, Dirección de Investigación and Vicerretoria, and by FONDECYT-Chile through Project 91-386.  相似文献   

15.
Summary A quasilinear second order partial differential operator of divergence form, involving N unknown functions and independent variables is transformed into a nonlinear functional operator in a Hilbert space. The constraint of potenlialness imposed on the nonlinear operator is seen to be equivalent in the case N=3 to hyperelasticity in the differential operator of elasiticity. By imposing further conditions on the differential operator, and assuming it is polynomial in the Frechet derivative of the unknown functions it becomes possible to extend to finite hyperelasticity a result proved earlier for infinitesimal hyperelasticity. Entrata in Redazione il 25 gennaio 1971.  相似文献   

16.
We analyze the convergence of the Newton method when the first Fréchet derivative of the operator involved is Hölder continuous. We calculate also the R-order of convergence and provide some a priori error bounds. Based on this study, we give some results on the existence and uniqueness of the solution for a nonlinear Hammerstein integral equation of the second kind.  相似文献   

17.
We study an iterative method with order for solving nonlinear operator equations in Banach spaces. Algorithms for specific operator equations are built up. We present the received new results of the local and semilocal convergence, in case when the first-order divided differences of a nonlinear operator are Hölder continuous. Moreover a quadratic nonlinear majorant for a nonlinear operator, according to the conditions laid upon it, is built. A priori and a posteriori estimations of the method’s error are received. The method needs almost the same number of computations as the classical Secant method, but has a higher order of convergence. We apply our results to the numerical solving of a nonlinear boundary value problem of second-order and to the systems of nonlinear equations of large dimension.  相似文献   

18.
研究一类无限维非线性互补问题的光滑化牛顿法.借助于非线性互补函数,将无限维非线性互补问题转化为一个非光滑算子方程.构造光滑算子逼近非光滑算子,在光滑逼近算子满足方向可微相容性的条件下,证明了光滑化牛顿法具有超线性收敛性.  相似文献   

19.
The pseudo‐spectral Legendre–Galerkin method (PS‐LGM) is applied to solve a nonlinear partial integro‐differential equation arising in population dynamics. This equation is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. The proposed method is based on the Legendre–Galerkin formulation for the linear terms and interpolation operator at the Chebyshev–Gauss–Lobatto (CGL) points for the nonlinear terms. Also, the integral term, which is a kind of convolution, is directly computed by a fast and accurate method based on CGL interpolation operator, and thus, the use of any quadrature formula in its computation is avoided. The main difference of the PS‐LGM presented in the current paper with the classic LGM is in treating the nonlinear terms and imposing boundary conditions. Indeed, in the PS‐LGM, the nonlinear terms are efficiently handled using the CGL points, and also the boundary conditions are imposed strongly as collocation methods. Combination of the PS‐LGM with a semi‐implicit time integration method such as second‐order backward differentiation formula and Adams‐Bashforth method leads to reducing the complexity of computations and obtaining a linear algebraic system of equations with banded coefficient matrix. The desired equation is considered on one and two‐dimensional spatial domains. Efficiency, accuracy, and convergence of the proposed method are demonstrated numerically in both cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Following the lead of [Carrillo, Arch. Ration. Mech. Anal. 147 (1999) 269-361], recently several authors have used Kru?kov's device of “doubling the variables” to prove uniqueness results for entropy solutions of nonlinear degenerate parabolic equations. In all these results, the second order differential operator is not allowed to depend explicitly on the spatial variable, which certainly restricts the range of applications of entropy solution theory. The purpose of this paper is to extend a version of Carrillo's uniqueness result to a class of degenerate parabolic equations with spatially dependent second order differential operator. The class is large enough to encompass several interesting nonlinear partial differential equations coming from the theory of porous media flow and the phenomenological theory of sedimentation-consolidation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号