首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Given a simple plane graph G, an edge‐face k‐coloring of G is a function ? : E(G) ∪ F(G) → {1,…,k} such that, for any two adjacent or incident elements a, bE(G) ∪ F(G), ?(a) ≠ ?(b). Let χe(G), χef(G), and Δ(G) denote the edge chromatic number, the edge‐face chromatic number, and the maximum degree of G, respectively. In this paper, we prove that χef(G) = χe(G) = Δ(G) for any 2‐connected simple plane graph G with Δ (G) ≥ 24. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

2.
G is any simple graph with m edges and n vertices where these vertices have vertex degrees d(1)≥d(2)≥?≥d(n), respectively. General algorithms for the exact calculation of χ(G), the chromatic number of G, are almost always of ‘branch and bound’ type; this type of algorithm requires an easily constructed lower bound for χ(G). In this paper it is shown that, for a number of such bounds (many of which are described here for the first time), the bound does not exceed cl(G) where cl(G) is the clique number of G.In 1972 Myers and Liu showed that cl(G)≥n?(n?2m?n). Here we show that cl(G)≥ n?[n?(2m?n)(1+c2v)12], where cv is the vertex degree coefficient of variation in G, that cl(G)≥ Bondy's constructive lower bound for χ(G), and that cl(G)≥n?(n?W(G)), where W(G) is the largest positive integer such that W(G)≤d(W(G)+1) [W(G)+1 is the Welsh and Powell upper bound for χ(G)]. It is also shown that cl(G)+13>n?(n?L(G))≥n?(n1) and that χ(G)≥ n?(n1); λ1 is the largest eigenvalue of A, the adjacency matrix of G, and L(G) is a newly defined single-valued function of G similar to W(G) in its construction from the vertex degree sequence of G [L(G)≥W(G)].Finally, a ‘greedy’ lower bound for cl(G) is constructed from A and it is shown that this lower bound is never less than Bondy's bound; thereafter, for 150 random graphs with varying numbers of vertices and edge densities, the values of lower bounds given in this paper are listed, thereby illustrating that this last greedily obtained lower bound is almost always better than each of the other bounds.  相似文献   

3.
For a pair of integers k, l≥0, a graph G is (k, l)‐colorable if its vertices can be partitioned into at most k independent sets and at most l cliques. The bichromatic number χb(G) of G is the least integer r such that for all k, l with k+l=r, G is (k, l)‐colorable. The concept of bichromatic numbers simultaneously generalizes the chromatic number χ(G) and the clique covering number θ(G), and is important in studying the speed of hereditary properties and edit distances of graphs. It is easy to see that for every graph G the bichromatic number χb(G) is bounded above by χ(G)+θ(G)?1. In this article, we characterize all graphs G for which the upper bound is attained, i.e., χb(G)=χ(G)+θ(G)?1. It turns out that all these graphs are cographs and in fact they are the critical graphs with respect to the (k, l)‐colorability of cographs. More specifically, we show that a cograph H is not (k, l)‐colorable if and only if H contains an induced subgraph G with χ(G)=k+1, θ(G)=l+1 and χb(G)=k+l+1. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 263–269, 2010  相似文献   

4.
It is known that the functions FG(k) and IG(k) evaluating the numbers of nowhere-zero k- and k-flows in a graph G, respectively, are polynomials of k. If X is a totally cyclic orientation of G, then the number of integral flows having values 1,,k–1 on the arcs of X can be evaluated by a polynomial IX(k). FG(k) and IG(k) can be expressed as sums of IX(k). In this paper we show that the value IX(k) is positive for every totally cyclic orientation X of G if and only if k is greater than or equal to the maximum cardinality of an elementary edge-cut of G.Acknowledgments.This paper was finished during visiting School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia.Mathematics Subject Classification (1991): 05C15, 05C20  相似文献   

5.
 Assume that G is a 3-colourable connected graph with e(G) = 2v(G) −k, where k≥ 4. It has been shown that s 3(G) ≥ 2 k −3, where s r (G) = P(G,r)/r! for any positive integer r and P(G, λ) is the chromatic polynomial of G. In this paper, we prove that if G is 2-connected and s 3(G) < 2 k −2, then G contains at most v(G) −k triangles; and the upper bound is attained only if G is a graph obtained by replacing each edge in the k-cycle C k by a 2-tree. By using this result, we settle the problem of determining if W(n, s) is χ-unique, where W(n, s) is the graph obtained from the wheel W n by deleting all but s consecutive spokes. Received: January 29, 1999 Final version received: April 8, 2000  相似文献   

6.
Let G be a graph of order 4k and let δ(G) denote the minimum degree of G. Let F be a given connected graph. Suppose that |V(G)| is a multiple of |V(F)|. A spanning subgraph of G is called an F‐factor if its components are all isomorphic to F. In this paper, we prove that if δ(G)≥5/2k, then G contains a K4?‐factor (K4? is the graph obtained from K4 by deleting just one edge). The condition on the minimum degree is best possible in a sense. In addition, the proof can be made algorithmic. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 111–128, 2002  相似文献   

7.
Let ? be a prime ring of characteristic different from 2, 𝒬r the right Martindale quotient ring of ?, 𝒞 the extended centroid of ?, F, G two generalized skew derivations of ?, and k ≥ 1 be a fixed integer. If [F(r), r]kr ? r[G(r), r]k = 0 for all r ∈ ?, then there exist a ∈ 𝒬r and λ ∈ 𝒞 such that F(x) = xa and G(x) = (a + λ)x, for all x ∈ ?.  相似文献   

8.
9.
This paper discusses the circular version of list coloring of graphs. We give two definitions of the circular list chromatic number (or circular choosability) χc, l(G) of a graph G and prove that they are equivalent. Then we prove that for any graph G, χc, l(G) ≥ χl(G) ? 1. Examples are given to show that this bound is sharp in the sense that for any ? 0, there is a graph G with χc, l(G) > χl(G) ? 1 + ?. It is also proved that k‐degenerate graphs G have χc, l(G) ≤ 2k. This bound is also sharp: for each ? < 0, there is a k‐degenerate graph G with χc, l(G) ≥ 2k ? ?. This shows that χc, l(G) could be arbitrarily larger than χl(G). Finally we prove that if G has maximum degree k, then χc, l(G) ≤ k + 1. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 210–218, 2005  相似文献   

10.
It was proved by Hell and Zhu that, if G is a series‐parallel graph of girth at least 2⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). In this article, we prove that the girth requirement is sharp, i.e., for any k ≥ 2, there is a series‐parallel graph G of girth 2⌊(3k − 1)/2⌋ − 1 such that χc(G) > 4k/(2k − 1). © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 185–198, 2000  相似文献   

11.
Given a bipartite graph H and a positive integer n such that v(H) divides 2n, we define the minimum degree threshold for bipartite H‐tiling, δ2(n, H), as the smallest integer k such that every bipartite graph G with n vertices in each partition and minimum degree δ(G)≥k contains a spanning subgraph consisting of vertex‐disjoint copies of H. Zhao, Hladký‐Schacht, Czygrinow‐DeBiasio determined δ2(n, Ks, t) exactly for all s?t and suffi‐ciently large n. In this article we determine δ2(n, H), up to an additive constant, for all bipartite H and sufficiently large n. Additionally, we give a corresponding minimum degree threshold to guarantee that G has an H‐tiling missing only a constant number of vertices. Our δ2(n, H) depends on either the chromatic number χ(H) or the critical chromatic number χcr(H), while the threshold for the almost perfect tiling only depends on χcr(H). These results can be viewed as bipartite analogs to the results of Kuhn and Osthus [Combinatorica 29 (2009), 65–107] and of Shokoufandeh and Zhao [Rand Struc Alg 23 (2003), 180–205]. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

12.
Consider the following random process: The vertices of a binomial random graph Gn,p are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number r of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph F in the process. Our first main result is that for any F and r, the threshold function for this problem is given by p0(F,r,n) = n‐1/m*1(F,r), where m*1(F,r) denotes the so‐called online vertex‐Ramsey density of F and r. This parameter is defined via a purely deterministic two‐player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any F and r, the online vertex‐Ramsey density m*1(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial‐time online algorithms that succeed in coloring Gn,p as desired with probability 1 ‐ o(1) for any p(n) = o(n‐1/m*1(F,r)). © 2012 Wiley Periodicals, Inc. Random Struct. Alg. 44, 419–464, 2014  相似文献   

13.
Let S(r) denote a circle of circumference r. The circular consecutive choosability chcc(G) of a graph G is the least real number t such that for any r≥χc(G), if each vertex v is assigned a closed interval L(v) of length t on S(r), then there is a circular r‐coloring f of G such that f(v)∈L(v). We investigate, for a graph, the relations between its circular consecutive choosability and choosability. It is proved that for any positive integer k, if a graph G is k‐choosable, then chcc(G)?k + 1 ? 1/k; moreover, the bound is sharp for k≥3. For k = 2, it is proved that if G is 2‐choosable then chcc(G)?2, while the equality holds if and only if G contains a cycle. In addition, we prove that there exist circular consecutive 2‐choosable graphs which are not 2‐choosable. In particular, it is shown that chcc(G) = 2 holds for all cycles and for K2, n with n≥2. On the other hand, we prove that chcc(G)>2 holds for many generalized theta graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 67: 178‐197, 2011  相似文献   

14.
For a given undirected graphG = (V, E, cG) with edges weighted by nonnegative realscG:ER + , let ΛG(k) stand for the minimum amount of weights which needs to be added to makeG k-edge-connected, and letG*(k) be the resulting graph obtained fromG. This paper first shows that function ΛGover the entire rangek [0, +∞] can be computed inO(nm + n2 log n) time, and then shows that allG*(k) in the entire range can be obtained fromO(n log n) weighted cycles, and such cycles can be computed inO(nm + n2 log n) time, wherenandmare the numbers of vertices and edges, respectively.  相似文献   

15.
The First‐Fit (or Grundy) chromatic number of G, written as χFF(G), is defined as the maximum number of classes in an ordered partition of V(G) into independent sets so that each vertex has a neighbor in each set earlier than its own. The well‐known Nordhaus‐‐Gaddum inequality states that the sum of the ordinary chromatic numbers of an n‐vertex graph and its complement is at most n + 1. Zaker suggested finding the analogous inequality for the First‐Fit chromatic number. We show for n ≥ 10 that ?(5n + 2)/4? is an upper bound, and this is sharp. We extend the problem for multicolorings as well and prove asymptotic results for infinitely many cases. We also show that the smallest order of C4‐free bipartite graphs with χFF(G) = k is asymptotically 2k2 (the upper bound answers a problem of Zaker [9]). © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 75–88, 2008  相似文献   

16.
 In this paper we study three-color Ramsey numbers. Let K i,j denote a complete i by j bipartite graph. We shall show that (i) for any connected graphs G 1, G 2 and G 3, if r(G 1, G 2)≥s(G 3), then r(G 1, G 2, G 3)≥(r(G 1, G 2)−1)(χ(G 3)−1)+s(G 3), where s(G 3) is the chromatic surplus of G 3; (ii) (k+m−2)(n−1)+1≤r(K 1,k , K 1,m , K n )≤ (k+m−1)(n−1)+1, and if k or m is odd, the second inequality becomes an equality; (iii) for any fixed mk≥2, there is a constant c such that r(K k,m , K k,m , K n )≤c(n/logn), and r(C 2m , C 2m , K n )≤c(n/logn) m/(m−1) for sufficiently large n. Received: July 25, 2000 Final version received: July 30, 2002 RID="*" ID="*" Partially supported by RGC, Hong Kong; FRG, Hong Kong Baptist University; and by NSFC, the scientific foundations of education ministry of China, and the foundations of Jiangsu Province Acknowledgments. The authors are grateful to the referee for his valuable comments. AMS 2000 MSC: 05C55  相似文献   

17.
A k-decomposition (G1,…,Gk) of a graph G is a partition of its edge set to form k spanning subgraphs G1,…,Gk. The classical theorem of Nordhaus and Gaddum bounds χ(G1) + χ(G2) and χ(G1)χ(G2) over all 2-decompositions of Kn. For a graph parameter p, let p(k;G) denote the maximum of over all k-decompositions of the graph G. The clique number ω, chromatic number χ, list chromatic number χℓ, and Szekeres–Wilf number σ satisfy ω(2;Kn) = χ(2;Kn) = χℓ(2;Kn) = σ(2;Kn) = n + 1. We obtain lower and upper bounds for ω(k;Kn), χ(k;Kn), χℓ(k;Kn), and σ(k;Kn). The last three behave differently for large k. We also obtain lower and upper bounds for the maximum of χ(k;G) over all graphs embedded on a given surface. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

18.
If sk denotes the number of independent sets of cardinality k and α(G) is the size of a maximum independent set in graph G, then I(G;x)=s0+s1x+?+sα(G)xα(G) is the independence polynomial of G (Gutman and Harary, 1983) [8].In this paper we provide an elementary proof of the inequality|I(G;−1)|≤2φ(G) (Engström, 2009) [7], where φ(G) is the decycling number of G (Beineke and Vandell, 1997) [3], namely, the minimum number of vertices that have to be deleted in order to turn G into a forest.  相似文献   

19.
Let G(n,c/n) and Gr(n) be an n‐node sparse random graph and a sparse random r‐regular graph, respectively, and let I(n,r) and I(n,c) be the sizes of the largest independent set in G(n,c/n) and Gr(n). The asymptotic value of I(n,c)/n as n → ∞, can be computed using the Karp‐Sipser algorithm when ce. For random cubic graphs, r = 3, it is only known that .432 ≤ lim infn I(n,3)/n ≤ lim supn I(n,3)/n ≤ .4591 with high probability (w.h.p.) as n → ∞, as shown in Frieze and Suen [Random Structures Algorithms 5 (1994), 649–664] and Bollabas [European J Combin 1 (1980), 311–316], respectively. In this paper we assume in addition that the nodes of the graph are equipped with nonnegative weights, independently generated according to some common distribution, and we consider instead the maximum weight of an independent set. Surprisingly, we discover that for certain weight distributions, the limit limn I(n,c)/n can be computed exactly even when c > e, and limn I(n,r)/n can be computed exactly for some r ≥ 1. For example, when the weights are exponentially distributed with parameter 1, limn I(n,2e)/n ≈ .5517, and limn I(n,3)/n ≈ .6077. Our results are established using the recently developed local weak convergence method further reduced to a certain local optimality property exhibited by the models we consider. We extend our results to maximum weight matchings in G(n,c/n) and Gr(n). For the case of exponential distributions, we compute the corresponding limits for every c > 0 and every r ≥ 2. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

20.
Let R be a noncommutative prime ring and I a nonzero left ideal of R. Let g be a generalized derivation of R such that [g(r k ), r k ] n  = 0 for all r ∈ I, where k, n are fixed positive integers. Then there exists c ∈ U, the left Utumi quotient ring of R, such that g(x) = xc and I(c ? α) = 0 for a suitable α ∈ C. In particular we have that g(x) = α x, for all x ∈ I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号