首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We study links between the linear bilevel and linear mixed 0–1 programming problems. A new reformulation of the linear mixed 0–1 programming problem into a linear bilevel programming one, which does not require the introduction of a large finite constant, is presented. We show that solving a linear mixed 0–1 problem by a classical branch-and-bound algorithm is equivalent in a strong sense to solving its bilevel reformulation by a bilevel branch-and-bound algorithm. The mixed 0–1 algorithm is embedded in the bilevel algorithm through the aforementioned reformulation; i.e., when applied to any mixed 0–1 instance and its bilevel reformulation, they generate sequences of subproblems which are identical via the reformulation.  相似文献   

2.
We present an approximation algorithm for solving large 0–1 integer programming problems whereA is 0–1 and whereb is integer. The method can be viewed as a dual coordinate search for solving the LP-relaxation, reformulated as an unconstrained nonlinear problem, and an approximation scheme working together with this method. The approximation scheme works by adjusting the costs as little as possible so that the new problem has an integer solution. The degree of approximation is determined by a parameter, and for different levels of approximation the resulting algorithm can be interpreted in terms of linear programming, dynamic programming, and as a greedy algorithm. The algorithm is used in the CARMEN system for airline crew scheduling used by several major airlines, and we show that the algorithm performs well for large set covering problems, in comparison to the CPLEX system, in terms of both time and quality. We also present results on some well known difficult set covering problems that have appeared in the literature.  相似文献   

3.
We propose local search algorithms for the rectangle packing problem to minimize a general spatial cost associated with the locations of rectangles. The problem is to pack given rectangles without overlap in the plane so that the maximum cost of the rectangles is minimized. Each rectangle has a set of modes, where each mode specifies the width and height of the rectangle and its spatial cost function. The spatial costs are general piecewise linear functions which can be non-convex and discontinuous. Various types of packing problems and scheduling problems can be formulated in this form. To represent a solution of this problem, a pair of permutations of n rectangles is used to determine their horizontal and vertical partial orders, respectively. We show that, under the constraint specified by such a pair of permutations, optimal locations of the rectangles can be efficiently determined by using dynamic programming. The search for finding good pairs of permutations is conducted by local search and metaheuristic algorithms. We report computational results on various implementations using different neighborhoods, and compare their performance. We also compare our algorithms with other existing heuristic algorithms for the rectangle packing problem and scheduling problem. These computational results exhibit good prospects of the proposed algorithms. Key words.rectangle packing – sequence pair – general spatial cost – dynamic programming – metaheuristicsMathematics Subject Classification (1991):20E28, 20G40, 20C20  相似文献   

4.
Fundamental dynamic programming recursive equations are extended to the multicriteria framework. In particular, a more detailed procedure for a general recursive solution scheme for the multicriteria discrete mathematical programming problem is developed. Definitions of lower and upper bounds are offered for the multicriteria case and are incorporated into the recursive equations to aid problem solution by eliminating inefficient subpolicies. Computational results are reported for a set of 0–1 integer linear programming problems.This research was supported in part by CONACYT (Consejo Nacional de Ciencia y Technologia), Mexico City, Mexico.  相似文献   

5.
In this paper, we review recent advances in the distributional analysis of mixed integer linear programs with random objective coefficients. Suppose that the probability distribution of the objective coefficients is incompletely specified and characterized through partial moment information. Conic programming methods have been recently used to find distributionally robust bounds for the expected optimal value of mixed integer linear programs over the set of all distributions with the given moment information. These methods also provide additional information on the probability that a binary variable attains a value of 1 in the optimal solution for 0–1 integer linear programs. This probability is defined as the persistency of a binary variable. In this paper, we provide an overview of the complexity results for these models, conic programming formulations that are readily implementable with standard solvers and important applications of persistency models. The main message that we hope to convey through this review is that tools of conic programming provide important insights in the probabilistic analysis of discrete optimization problems. These tools lead to distributionally robust bounds with applications in activity networks, vertex packing, discrete choice models, random walks and sequencing problems, and newsvendor problems.  相似文献   

6.
We present a receding horizon algorithm that converges to the exact solution in polynomial time for a class of optimal impulse control problems with uniformly distributed impulse instants and governed by so-called reverse dwell time conditions. The cost has two separate terms, one depending on time and the second monotonically decreasing on the state norm. The obtained results have both theoretical and practical relevance. From a theoretical perspective we prove certain geometrical properties of the discrete set of feasible solutions. From a practical standpoint, such properties reduce the computational burden and speed up the search for the optimum thus making the algorithm suitable for the on-line implementation in real-time problems. Our approach consists in approximating the optimal impulse control problem via a binary linear programming problem with a totally unimodular constraint matrix. Hence, solving the binary linear programming problem is equivalent to solving its linear relaxation. Then, given the feasible solution from the linear relaxation, we find the optimal solution via receding horizon and local search. Numerical illustrations of a queueing system are performed.  相似文献   

7.
Given a finite setX and a family of feasible subsetsF ofX, the 0–1 polytope P (F is defined as the convex hull of all the characteristic vectors of members ofF We show that under a certain assumption a special type of face ofP(F) is equivalent to the ideal polytope of some pseudo-ordered set. Examples of families satisfying the assumption are those related to the maximum stable set problem, set packing and set partitioning problems, and vertex coloring problem. Using this fact, we propose a new heuristic for such problems and give results of our preliminary computational experiments for the maximum stable set problem.Supported by a JSPS Fellowship for Young Scientists.Supported by Grant-in-Aids for Co-operative Research (06740147) of the Ministry of Education, Science and Culture.  相似文献   

8.
In this paper, we consider the linear complementarity problem (LCP) and present a global optimization algorithm based on an application of the reformulation-linearization technique (RLT). The matrix M associated with the LCP is not assumed to possess any special structure. In this approach, the LCP is formulated first as a mixed-integer 0–1 bilinear programming problem. The RLT scheme is then used to derive a new equivalent mixed-integer linear programming formulation of the LCP. An implicit enumeration scheme is developed that uses Lagrangian relaxation, strongest surrogate and strengthened cutting planes, and a heuristic, designed to exploit the strength of the resulting linearization. Computational experience on various test problems is presented.  相似文献   

9.
This article presents an algorithm for globally solving a sum of ratios fractional programming problem. To solve this problem, the algorithm globally solves an equivalent concave minimization problem via a branch-and-bound search. The main work of the algorithm involves solving a sequence of convex programming problems that differ only in their objective function coefficients. Therefore, to solve efficiently these convex programming problems, an optimal solution to one problem can potentially be used to good advantage as a starting solution to the next problem.  相似文献   

10.
Packing optimization problems aim to seek the best way of placing a given set of rectangular cartons within a minimum volume rectangular container. Currently, packing optimization methods either have difficulty in finding a globally optimal solution or are computationally inefficient, because models involve too many 0–1 variables and because use of just a single computer. This study proposes a distributed computation method for solving a packing problem by a set of personal computers via the Internet. First, the traditional packing optimization model is converted into an equivalent model containing many fewer 0–1 variables. Then the model is decomposed into several sub-problems by dividing the objective value into many intervals. Each of these sub-problems is a linearized logarithmic program expressed as a linear mixed 0–1 problem. The whole problem is solvable and reaches a globally optimal solution. The numerical examples demonstrate that the proposed method can obtain the global optimum of a packing problem effectively.  相似文献   

11.
Given a weighted graph G, in the minimum-cost-edge-selection problem (MCES), a minimum weighted set of edges is chosen subject to an upper bound on the diameter of graph G. Similarly, in the minimum-diameter-edge-selection problem (MDES), a set of edges is chosen to minimize the diameter subject to an upper bound on their total weight. These problems are shown to be equivalent and proven to be NP-complete. MCES is then formulated as a 0–1 integer programming problem. The problems MCES and MDES provide models for determining smallest-world networks and for measuring the “small-worldness” of graphs.  相似文献   

12.
Given a graph with weights on vertices, the vertex packing problem consists of finding a vertex packing (i.e. a set of vertices, no two of them being adjacent) of maximum weight. A linear relaxation of one binary programming formulation of this problem has these two well-known properties: (i) every basic solution is (0, 1/2, 1)-valued, (ii) in an optimum linear solution, an integer-valued variable keeps the same value in an optimum binary solution.As an answer to an open problem from Nemhauser and Trotter, it is shown that there is a unique maximal set of variables which are integral in optimal (VLP) solutions.This research was supported by National Research Council of Canada GRANT A8528 and RD 804.  相似文献   

13.
We study a generalization of the vertex packing problem having both binary and bounded continuous variables, called the mixed vertex packing problem (MVPP). The well-known vertex packing model arises as a subproblem or relaxation of many 0-1 integer problems, whereas the mixed vertex packing model arises as a natural counterpart of vertex packing in the context of mixed 0-1 integer programming. We describe strong valid inequalities for the convex hull of solutions to the MVPP and separation algorithms for these inequalities. We give a summary of computational results with a branch-and-cut algorithm for solving the MVPP and using it to solve general mixed-integer problems. Received: June 1998 / Accepted: February 2000?Published online September 20, 2000  相似文献   

14.
In this paper, we propose a new continuous approach for the unconstrained binary quadratic programming (BQP) problems based on the Fischer-Burmeister NCP function. Unlike existing relaxation methods, the approach reformulates a BQP problem as an equivalent continuous optimization problem, and then seeks its global minimizer via a global continuation algorithm which is developed by a sequence of unconstrained minimization for a global smoothing function. This smoothing function is shown to be strictly convex in the whole domain or in a subset of its domain if the involved barrier or penalty parameter is set to be sufficiently large, and consequently a global optimal solution can be expected. Numerical results are reported for 0-1 quadratic programming problems from the OR-Library, and the optimal values generated are made comparisons with those given by the well-known SBB and BARON solvers. The comparison results indicate that the continuous approach is extremely promising by the quality of the optimal values generated and the computational work involved, if the initial barrier parameter is chosen appropriately. This work is partially supported by the Doctoral Starting-up Foundation (B13B6050640) of GuangDong Province.  相似文献   

15.
The linear models for the approximate solution of the problem of packing the maximum number of equal circles of the given radius into a given closed bounded domain G are proposed. We construct a grid in G; the nodes of this grid form a finite set of points T, and it is assumed that the centers of circles to be packed can be placed only at the points of T. The packing problems of equal circles with the centers at the points of T are reduced to 0–1 linear programming problems. A heuristic algorithm for solving the packing problems based on linear models is proposed. This algorithm makes it possible to solve packing problems for arbitrary connected closed bounded domains independently of their shape in a unified manner. Numerical results demonstrating the effectiveness of this approach are presented.  相似文献   

16.
This paper considers a single machine scheduling problem with the learning effect and multiple availability constraints that minimizes the total completion time. To solve this problem, a new binary integer programming model is presented, and a branch-and-bound algorithm is also developed for solving the given problem optimally. Since the problem is strongly NP-hard, to find the near-optimal solution for large-sized problems within a reasonable time, two meta-heuristics; namely, genetic algorithm and simulated annealing are developed. Finally, the computational results are provided to compare the result of the binary integer programming, branch-and-bound algorithm, genetic algorithm and simulated annealing. Then, the efficiency of the proposed algorithms is discussed.  相似文献   

17.
We consider 0–1 programming problems with a minimax objective function and any set of constraints. Upon appropriate transformations of its cost coefficients, such a minimax problem can be reduced to a linear minisum problem with the same set of feasible solutions such that an optimal solution to the latter will also solve the original minimax problem.Although this reducibility applies for any 0–1 programming problem, it is of particular interest for certain locational decision models. Among the obvious implications are that an algorithm for solving a p-median (minisum) problem in a network will also solve a corresponding p-center (minimax) problem.It should be emphasized that the results presented will in general only hold for 0–1 problems due to intrinsic properties of the minimax criterion.  相似文献   

18.
A data structure, called the primogenitary linked quad tree (PLQT), is used to store and retrieve solutions in heuristic solution procedures for binary optimization problems. Two ways are proposed to use integer vectors to represent solutions represented by binary vectors. One way is to encode binary vectors into integer vectors in a much lower dimension and the other is to use the sorted indices of binary variables with values equal to 0 or equal to 1. The integer vectors are used as composite keys to store and retrieve solutions in the PLQT. An algorithm processing trial solutions for insertion into or retrieval from the PLQT is developed. Examples are provided to demonstrate the way the algorithm works. Another algorithm traversing the PLQT is also developed. Computational results show that the PLQT approach takes only a very tiny portion of the CPU time taken by a linear list approach for the same purpose for any reasonable application. The CPU time taken by the PLQT managing trial solutions is negligible as compared to that taken by a heuristic procedure for any reasonably hard to solve binary optimization problem, as shown in a tabu search heuristic procedure for the capacitated facility location problem. Compared to the hashing approach, the PLQT approach takes the same or less amount of CPU time but much less memory space while completely eliminating collision.  相似文献   

19.
A non-overlapping domain decomposition algorithm of the Neumann–Neumann type for solving contact problems of elasticity is presented. Using the duality theory of convex programming, the discretized problem turns into a quadratic one with equality and bound constraints. The dual problem is modified by orthogonal projectors to the natural coarse space. The resulting problem is solved by an augmented Lagrangian algorithm. The projectors ensure an optimal convergence rate for the solution of the auxiliary linear problems by the preconditioned conjugate gradient method. Relevant aspects on the numerical linear algebra of these problems are presented, together with an efficient parallel implementation of the method.  相似文献   

20.
《Optimization》2012,61(7):989-1002
The rectangular packing problem aims to seek the best way of placing a given set of rectangular pieces within a large rectangle of minimal area. Such a problem is often constructed as a quadratic mixed-integer program. To find the global optimum of a rectangular packing problem, this study transforms the original problem as a mixed-integer linear programming problem by logarithmic transformations and an efficient piecewise linearization approach that uses a number of binary variables and constraints logarithmic in the number of piecewise line segments. The reformulated problem can be solved to obtain an optimal solution within a tolerable error. Numerical examples demonstrate the computational efficiency of the proposed method in globally solving rectangular packing problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号