首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the adaptive synchronization problem for a class of stochastic delayed neural networks. Based on the LaSalle invariant principle of stochastic differential delay equations and the stochastic analysis theory as well as the adaptive feedback control technique, a linear matrix inequality approach is developed to derive some novel sufficient conditions achieving complete synchronization of unidirectionally coupled stochastic delayed neural networks. In particular, the synchronization criterion considered in this paper is the globally almost surely asymptotic stability of the error dynamical system, which has seldom been applied to investigate the synchronization problem. Moreover, the delays proposed in this paper are time-varying delays and distributed delays, which have rarely been used to study the synchronization problem for coupled stochastic delayed neural networks. Therefore, the results obtained in this paper are more general and useful than those given in the previous literature. Finally, two numerical examples and their simulations are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

2.
ABSTRACT

This paper investigates the problem of master-slave synchronization of neural networks with time-varying delays via the event-triggered control (ETC). First, the proposed ETC can effectively reduce the total amount of data transmitted to the controller in the synchronization process and avoid communication channel congestion. Second, a master-slave synchronization of neural networks with time-varying delays is constructed, where delays within neural networks and the ETC are simultaneous existence. The controller is updated by the ETC. By the Lyapunov stability theory, some sufficient criteria are obtained to ensure master-slave synchronization of neural networks. Finally, a numerical example and a tunnel diode circuit example are used to verify the validity of results obtained.  相似文献   

3.
This paper investigates the general decay pathwise stability conditions on a class of stochastic neural networks with mixed delays by applying Lasalle method. The mixed time delays comprise both time-varying delays and infinite distributed delays. The contributions are as follows: (1)?we extend the Lasalle-type theorem to cover stochastic differential equations with mixed delays; (2)?based on the stochastic Lasalle theorem and the M-matrix theory, new criteria of general decay stability, which includes the almost surely exponential stability and the almost surely polynomial stability and the partial stability, for neural networks with mixed delays are established. As an application of our results, this paper also considers a two-dimensional delayed stochastic neural networks model.  相似文献   

4.
In this paper, we study the exponential synchronization problem of a class of chaotic delayed neural networks with impulsive and stochastic perturbations. The involved time delays include time-varying delays and unbounded distributed delays. Employing the method of impulsive delay differential inequality, several new sufficient conditions ensuring the exponential synchronization are obtained, which can be easily checked by LMI Control Toolbox in Matlab. Compared with the previous methods, our method does not resort to complicated Lyapunov–Krasovkii, and the results derived are independent of the time-varying delays and do not require the differentiability of delay functions and the monotony of the activation functions. Finally, a numerical example and its simulation is given to show the effectiveness of the obtained results in this paper.  相似文献   

5.
In this paper, a general model of an array of N linearly coupled delayed neural networks with Markovian jumping hybrid coupling is introduced. The hybrid coupling consists of constant coupling, discrete and distributed time-varying delay coupling. The complex dynamical network jumps from one mode to another according to a Markovian chain, where all the coupling configurations are also dependent on mode switching. Meanwhile, all the coupling terms are subjected to stochastic disturbances which are described in terms of a Brownian motion. By adaptive approach, some sufficient criteria have been derived to ensure the synchronization in an array of jump neural networks with mixed delays and hybrid coupling in mean square. Surprisingly, it is found that complex networks with two different structure can also be synchronized according to known probability matrix. Finally, an example illustrated by switching between small-world networks and nearest-neighbor networks is given to show the effectiveness of the proposed criteria.  相似文献   

6.
In this paper, we propose and investigate a new general model of fuzzy stochastic discrete-time complex networks (SDCNs) described by Takagi–Sugeno (T–S) fuzzy model with discrete and distributed time-varying delays. The proposed model takes some well-studied models as special cases. By employing a new Lyapunov functional candidate, we utilize some stochastic analysis techniques and Kronecker product to deduce delay-dependent synchronization criteria that ensure the mean-square synchronization of the proposed T–S fuzzy SDCNs with mixed time-varying delays. These sufficient conditions are computationally efficient as it can be solved numerically by the LMI toolbox in Matlab. A numerical simulation example is provided to verify the effectiveness and the applicability of the proposed approach.  相似文献   

7.
This paper considers the chaotic synchronization problem of neural networks with time-varying and distributed delays using impulsive control method. By utilizing the stability theory for impulsive functional differential equations, several impulsive control laws are derived to guarantee the exponential synchronization of neural networks with time-varying and distributed delays. It is shown that chaotic synchronization of the networks is heavily dependent on the designed impulsive controllers. Moreover, these conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox. Finally, a numerical example and its simulation are given to show the effectiveness and advantage of the proposed control schemes.  相似文献   

8.
This paper investigates the exponential synchronization problem of coupled oscillators networks with disturbances and time-varying delays. On basis of graph theory and stochastic analysis theory, a feedback control law is designed to achieve exponential synchronization. By constructing a global Lyapunov function for error network, both pth moment exponential synchronization and almost sure exponential synchronization of drive-response networks are obtained. Finally, a numerical example is given to show the effectiveness of the proposed criteria.  相似文献   

9.
In this paper, the asymptotic stability for a class of stochastic neural networks with time-varying delays and impulsive effects are considered. By employing the Lyapunov functional method, combined with linear matrix inequality optimization approach, a new set of sufficient conditions are derived for the asymptotic stability of stochastic delayed recurrent neural networks with impulses. A numerical example is given to show that the proposed result significantly improve the allowable upper bounds of delays over some existing results in the literature.  相似文献   

10.
This paper deals with the exponential synchronization problem for a class of stochastic jumping chaotic neural networks with mixed delays and sector bounded nonlinearities. The mixed time delays under consideration comprise both discrete time-varying delays and distributed time delays. By applying the Finsler’s Lemma and constructing appropriate Lyapunov-Krasovskii functional based on delay partitioning, several improved delay-dependent feedback controllers with sector nonlinearities are developed to achieve the synchronization in mean square in terms of linear matrix inequalities. It is established theoretically that two special cases of the obtained criteria are less conservative than some existing results but including fewer slack variables. As the present conditions involve no free weighting matrices, the computational burden is largely reduced. One numerical example is provided to demonstrate the effectiveness of the theoretical results.  相似文献   

11.
This paper investigates ultimate boundedness and a weak attractor for stochastic Hopfield neural networks (HNN) with time-varying delays. By employing the Lyapunov method and the matrix technique, some novel results and criteria on ultimate boundedness and an attractor for stochastic HNN with time-varying delays are derived. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.  相似文献   

12.
-In this paper, we investigate the synchronization problems of chaotic fuzzy cellular neural networks with time-varying delays. To overcome the difficulty that complete synchronization between non-identical chaotic neural networks cannot be achieved only by utilizing output feedback control, we use a sliding mode control approach to study the synchronization of non-identical chaotic fuzzy cellular neural networks with time-varying delays, where the parameters and activation functions are mismatched. This research demonstrates the effectiveness of application in secure communication. Numerical simulations are carried out to illustrate the main results.  相似文献   

13.
In this paper, the global exponential synchronization is investigated for an array of asymmetric neural networks with time-varying delays and nonlinear coupling, assuming neither the differentiability for time-varying delays nor the symmetry for the inner coupling matrices. By employing a new Lyapunov-Krasovskii functional, applying the theory of Kronecker product of matrices and the technique of linear matrix inequality (LMI), a delay-dependent sufficient condition in LMIs form for checking global exponential synchronization is obtained. The proposed result generalizes and improves the earlier publications. An example with chaotic nodes is given to show the effectiveness of the obtained result.  相似文献   

14.
This paper proposes an adaptive procedure to the problem of synchronization for a class of coupled identical Yang–Yang type fuzzy cellular neural networks (YYFCNN) with time-varying delays. Based on the simple adaptive controller, a set of sufficient conditions are developed to guarantee the synchronization of the coupled YYFCNN with time-varying delays. The results are much different from previous ones. It is proved that two coupled identical YYFCNN with time-varying delays can achieve synchronization by enhancing the coupled strength dynamically. In addition, this kind of controller is simple to be implemented and it is fairly robust against the effect of weak noise in the given time series. The approaches are based on using the invariance principle of functional differential equations, constructing a general Lyapunov–Krasovskii functional and employing a linear matrix inequality (LMI). An illustrative example and its simulations show the feasibility of our results. Finally, an application is given to show how to apply the presented synchronization scheme of YYFCNN to secure communication.  相似文献   

15.
In this paper, competitive neural networks with time-varying and distributed delays are investigated. By utilizing Lyapunov functional methods, the global exponential stability of periodic solutions of the neural networks is discussed on time scales. In addition, an example is given to illustrate the effectiveness of the theoretical results.  相似文献   

16.
This paper studies the synchronization problem of complex dynamical networks with stochastic delay which switches stochastically among several forms of time-varying delays. Both the discrete and distributed delays are considered, as well as the Markovian jump parameters. The occurrence probability distribution of the stochastic delay is assumed to be known in prior. By utilizing the Lyapunov–Krasovskii stability theory and stochastic analysis techniques, some sufficient exponential synchronization criteria are obtained, which depend not only on the size of delays, but also on the occurrence probability distribution of the stochastic delay. Moreover, the main results are successfully extended to multi-agent systems with stochastic delay. Several numerical examples are given to illustrate the feasibility and effectiveness of the proposed methods.  相似文献   

17.
Separate studies have been published on the stability of fuzzy cellular neural networks with time delay in the leakage term and synchronization issue of coupled chaotic neural networks with stochastic perturbation and reaction-diffusion effects. However, there have not been studies that integrate the two fields. Motivated by the achievements from both fields, this paper considers the exponential synchronization problem of coupled chaotic fuzzy cellular neural networks with stochastic noise perturbation, time delay in the leakage term and reaction-diffusion effects using linear feedback control. Lyapunov stability theory combining with stochastic analysis approaches are employed to derive sufficient criteria ensuring the coupled chaotic fuzzy neural networks to be exponentially synchronized. This paper also presents an illustrative example and uses simulated results of this example to show the feasibility and effectiveness of the proposed scheme.  相似文献   

18.
This paper deals with the problem of global exponential stability for a general class of stochastic high-order neural networks with mixed time delays and Markovian jumping parameters. The mixed time delays under consideration comprise both discrete time-varying delays and distributed time-delays. The main purpose of this paper is to establish easily verifiable conditions under which the delayed high-order stochastic jumping neural network is exponentially stable in the mean square in the presence of both mixed time delays and Markovian switching. By employing a new Lyapunov–Krasovskii functional and conducting stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the criteria ensuring exponential stability. Furthermore, the criteria are dependent on both the discrete time-delay and distributed time-delay, and hence less conservative. The proposed criteria can be readily checked by using some standard numerical packages such as the Matlab LMI Toolbox. A simple example is provided to demonstrate the effectiveness and applicability of the proposed testing criteria.  相似文献   

19.
利用Lyapunov泛函和随机分析的方法,研究了一类具有变时滞随机模糊细胞神经网络的均方指数稳定性,得到了这类神经网络均方指数稳定性的充分条件.数值例子说明了得到的结果的有效性.  相似文献   

20.
In this paper, the dynamic analysis problem is considered for a new class of Markovian jumping impulsive stochastic Cohen–Grossberg neural networks (CGNNs) with discrete interval and distributed delays. The parameter uncertainties are assumed to be norm bounded and the discrete delay is assumed to be time-varying and belonging to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the Lyapunov–Krasovskii functional and stochastic stability theory, delay-interval dependent stability criteria are obtained in terms of linear matrix inequalities. Some asymptotic stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be easily calculated by LMI Toolbox in Matlab. A numerical example is provided to show that the proposed results significantly improve the allowable upper bounds of delays over some existing results in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号