首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The damage process of metal-ceramic functionally graded material (FGM) is investigated. The microcrack evolution in a layered structure is analyzed using a numerical simulation of stresses and configurational forces. The modelling of an FGM of alumina ceramic and a metallic phase with gradually changing volume fraction of alumina is performed. A structure of two different layers bonded to a substrate is simulated. The stiffness and density of the three materials are varying. The evolution of configurational forces is simulated. The influence of the crack length on the crack driving force is studied for the case of a stress wave loading. The stress loading is applied in the horizontal direction as a dead load. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
A new spectral relation for Chebyshev-Laguerre polynomials is derived and its use to construct an exact solution of the antiplane problem of the theory of elasticity on the diffraction of a shock SH-wave by a semi-infinite crack is described, when this wave is incident on the crack at an arbitrary angle. The problem is reduced to an integro-differential equation by the method of discontinuous solutions. An exact solution of this equation using the spectral relation obtained is given. A formula is obtained for the scattered wave and for the stress intensity factor.  相似文献   

3.
The dynamic problem of electroelasticity for a piezoelectric half-space with tunnel cavities-cuts is examined. The problem is reduced to the solution of an integrodifferential singular equation in terms of the amplitude of the jump in displacements at the cut. Equations are obtained for the dynamic mechanial-stress intensity factor. The influence exerted by the curvature of the crack, its orientation, and the normalized wave number on the intensity factor is studied numerically.Translated from Teoreticheskaya i Prikladnaya Mekhanika, No. 20, pp. 50–55, 1989.  相似文献   

4.
We study the interaction of a magnetoelastic shear wave with a curvilinear tunnel crack in an ideally conducting diamagnetic (resp. paramagnetic) one-sided (resp. two-sided) layer in the presence of an external static magnetic field. The bases of the one-sided layer are free of mechanical load, and the rim of the face is clamped or free. The corresponding linearized boundary-value problem of magnetoelasticity is reduced to a singular integrodifferential equation with subsequent implementation on a computer. We give numerical results that characterize the influence of the size of the preliminary magnetic field, the frequencies of the load, the curvature, and the orientation of the crack on the stress intensity factor. Translated fromTeoreticheskaya i Prikladnaya Mekhanika, No. 23, 1992, pp. 96–102.  相似文献   

5.
压电压磁复合材料中界面裂纹对弹性波的散射   总被引:5,自引:1,他引:4  
利用Schmidt方法分析了压电压磁复合材料中可导通界面裂纹对反平面简谐波的散射问题.经过富里叶变换得到了以裂纹面上的间断位移为未知变量的对偶积分方程A·D2在求解对偶积分方程的过程中,裂纹面上的间断位移被展开成雅可比多项式的形式.数值模拟分析了裂纹长度、波速和入射波频率对应力强度因子、电位移强度因子、磁通量强度因子的影响A·D2从结果中可以看出,压电压磁复合材料中可导通界面裂纹的反平面问题的应力奇异性形式与一般弹性材料中的反平面问题应力奇异性形式相同.  相似文献   

6.
A cylindrically orthotropic elastic solid is excited by a point impulsive body force. The solid contains a semi-infinite stress free crack. The resulting anti-plane wave motion problem has been solved in the form of a finite series representing the incident and reflected pulses plus an integral representing the diffraction pulse. The series part of the solution has been previously treated. In the present investigation the diffraction integral is integrated when λ (which measures the anisotropy of the solid) is an odd integer number. The diffraction integral is also integrated when λ is half an odd integer, for the special case in which the source lies in the plane of the crack and parallel to the crack edge. The displacement jump across the circular diffraction wave front is given for unrestricted (positive) values of λ.  相似文献   

7.
A cylindrically orthotropic elastic solid is excited by a point impulsive body force. The solid contains a semi-infinite stress free crack. The resulting anti-plane wave motion problem has been solved in the form of a finite series representing the incident and reflected pulses plus an integral representing the diffraction pulse. The series part of the solution has been previously treated. In the present investigation the diffraction integral is integrated when λ (which measures the anisotropy of the solid) is an odd integer number. The diffraction integral is also integrated when λ is half an odd integer, for the special case in which the source lies in the plane of the crack and parallel to the crack edge. The displacement jump across the circular diffraction wave front is given for unrestricted (positive) values of λ.  相似文献   

8.
Already in 1920 Griffith has formulated an energy balance criterion for quasistatic crack propagation in brittle elastic materials. Nowadays, a generalized energy balance law is used in mechanics [F. Erdogan, Crack propagation theories, in: H. Liebowitz (Ed.), Fracture, vol. 2, Academic Press, New York, 1968, pp. 498-586; L.B. Freund, Dynamic Fracture Mechanics, Cambridge Univ. Press, Cambridge, 1990; D. Gross, Bruchmechanik, Springer-Verlag, Berlin, 1996] in order to predict how a running crack will grow. We discuss this situation in a rigorous mathematical way for the out-of-plane state. This model is described by two coupled equations in the reference configuration: a two-dimensional scalar wave equation for the displacement fields in a cracked bounded domain and an ordinary differential equation for the crack position derived from the energy balance law. We handle both equations separately, assuming at first that the crack position is known. Then the weak and strong solvability of the wave equation will be studied and the crack tip singularities will be derived under the assumption that the crack is straight and moves tangentially. Using the energy balance law and the crack tip behavior of the displacement fields we finally arrive at an ordinary differential equation for the motion of the crack tip.  相似文献   

9.
Mathematics Model for Deciding the Possibility of Crack ExistenceMathematicsModelforDecidingthePossibilityofCrackExistence¥Wu...  相似文献   

10.
主要基于细观力学方法揭示了畴极化转动对多晶铁电陶瓷的各向异性断裂特性的平均影响。首先,用Eshelby-Mori-Tanaka理论和统计模型分析了无穷大铁电材料体中一椭球夹杂的内、外电弹性场,得到畴极化转动对电弹性场的平均影响;其次,推导了等效多晶铁电陶瓷中含一钱币状裂纹的裂纹扩展力(能量释放率)Gext,并用它估计了畴极化转动对多晶铁电陶瓷断裂特性的影响。对BaTiO3陶瓷中裂纹扩展力的计算结果表明,对多晶铁电材料断裂特性分析必须考虑畴极化转动的影响。计算结果得出了与实验相一致的结论:在受较小的力时,外加电场对裂纹扩展产生较大的影响,而且在某种程度上能促进了裂纹扩展。  相似文献   

11.
A.-M. Sändig  A. Lalegname  S. Nicaise 《PAMM》2007,7(1):1090801-1090802
We discuss the propagation of a running crack under shear waves in a rigorous mathematical way for a simplified model. This model is described by two coupled equations in the actual configuration: a two-dimensional scalar wave equation in a cracked bounded domain and an ordinary differential equation derived from an energy balance law. The unknowns are the displacement fields u = u (y, t) and the one-dimensional crack tip trajectory h = h (t). We handle both equations separately, assuming at first that the crack position is known. Existence and uniqueness of strong solutions of the wave equation are studied and the crack-tip singularities are derived under the assumption that the crack is straight and moves tangentially. Using an energy balance law and the crack tip behaviour of the displacement fields we finally arrive at an ordinary differential equation for h (t), called equation of motion for the crack tip. We demonstrate the crack-tip motion with corresponding nonuniformly crack speed by numerical simulations. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Detonation-driven fracture of thin structures is studied numerically by a 3D discrete crack meshfree method. These types of failure mechanisms play an important role in pipes and vessels. I therefore proposed a three-dimensional meshfree method and an efficient discrete crack model to describe crack propagation. The method is based on separation of particles similar to the visibility method but its implementation is more efficient. I assume here through-thickness cracks though the method can be extended to crack growth in arbitrary directions. The load is applied as travelling pressure wave obtained from pure fluid simulation in accordance with experimental measurements. Numerical results to experimental data show good agreement.  相似文献   

13.
The problem of interaction of a plane time-harmonic SH-wave with an elastic fiber of quasi-square or quasi-triangular cross section, when an interface crack is present between an infinite elastic matrix and the fiber, is considered. The modified null-field method taking into account the asymptotic behavior of the solution at crack tips is exploited for obtaining numerical results. The effects of fiber shape, fiber/matrix material combination, debonding (crack size), and direction of wave incidence on the scattering amplitude in the far zone are analyzed. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 2, pp. 245–254, March–April, 2008.  相似文献   

14.
The problem of electric and acoustic waves diffraction by a half-plane crack in a transversal isotropic piezoelectric medium is investigated. The crack is assumed to be electric permeable and free of tractions. The so-called “quasi-hyperbolic approximation” [15] is adopted. Applying Laplace transformations and Wiener–Hopf technique a closed form solution is obtained. By the means of Cagniard–de Hoop method a detailed dynamic full electroacoustic wavefield’s investigation is conducted. Mode conversion between electric and acoustic waves, effect of electroacoustic head wave, Bleustein–Gulyaev surface wave and the wavefield structure depending on the type of the incident wave (acoustic or electric) and its angle of incidence are analyzed in details. The dynamic field intensity factors at the crack tip depending on the angle of incidence and on time are derived explicitly. Numerical analysis is presented.  相似文献   

15.
The problem of electric and acoustic waves diffraction by a half-plane crack in a transversal isotropic piezoelectric medium is investigated. The crack is assumed to be electric permeable and free of tractions. The so-called “quasi-hyperbolic approximation” [15] is adopted. Applying Laplace transformations and Wiener–Hopf technique a closed form solution is obtained. By the means of Cagniard–de Hoop method a detailed dynamic full electroacoustic wavefield’s investigation is conducted. Mode conversion between electric and acoustic waves, effect of electroacoustic head wave, Bleustein–Gulyaev surface wave and the wavefield structure depending on the type of the incident wave (acoustic or electric) and its angle of incidence are analyzed in details. The dynamic field intensity factors at the crack tip depending on the angle of incidence and on time are derived explicitly. Numerical analysis is presented.  相似文献   

16.
We investigate the influence of a thin strip-like defect (crack or inclusion) and conditions of its interaction with a matrix on a wave field scattered by the defect. It is assumed that the matrix is under conditions of antiplane strain and that plane harmonic longitudinal-shear waves propagate in it. To determine the wave field, we formulate and solve boundary-value problems for a body with the corresponding defect by the method of discontinuous solutions. Main attention is given to a characteristic of the scattered field such as the total scattering cross-section. It is established that there exist angles of propagation of waves for which total scattering cross-sections differ significantly for defects of different types and different conditions of interaction between a defect and a matrix. This proves the possibility to determine the type of defect and conditions of its interaction with a matrix using the total scattering cross-section.  相似文献   

17.
双I—型裂纹断裂动力学问题的非局部理论解   总被引:5,自引:1,他引:4  
研究了非局部理论双中I-型裂纹弹性波散射的力学问题,并利用富里叶变换使本问题的求解转换为三重积分方程的求解,进而采用新方法和利用一维非局部积分核代替二维非局部积分核来确定裂纹尖端的应力状态,这种方法就是Schmidt方法,所得结是比艾林根研究断裂静力学问题的结果准确和更加合理,克服了艾林根研究断裂静力学问题时遇到的数学困难,与经典弹性解相比,裂纹尖端不再出现物理意义下不合理的应力奇异性,并能够解释宏观裂纹与微观裂纹的力学问题。  相似文献   

18.
This paper investigated dynamic initiation of crack growth and crack fast propagation for the double cantilever-beam specimen (DCB) of two-dimensional decagonal Al-Ni-Co quasicrystals. The elasto-/hydro-dynamic model for wave propagation and diffusion together with their interaction is adopted. Numerical results of stresses, displacements and dynamic stress intensity factor are obtained by the finite difference method. Dynamic initiation of crack growth and crack fast propagation are discussed in detail in which the latter is a nonlinear problem arising from moving boundary effect, which is in particular explored.  相似文献   

19.
This paper develops a closed-form solution for an interface crack in a layered magnetoelectroelastic strip of finite width. The strip is subjected to anti-plane mechanical and in-plane electric and magnetic fields. Explicit expressions for the stress, electric, and magnetic fields, together with their intensity factors, are obtained for two extreme cases of an impermeable and a permeable cracks. The stress intensity factor does not depend on the electromagnetic boundary conditions assumed for the crack. However, the electrically and magnetically permeable boundary conditions on the crack profile have a significant influence on the crack-tip electromagnetic field intensity factors. Solutions for some special cases, such as a central crack, an edge crack, two symmetric collinear cracks, and a row of collinear interface cracks, are also obtained in closed forms. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 6, pp. 763–784, November–December, 2008.  相似文献   

20.
This paper is concerned with the diffraction problem in a transversely isotropic piezoelectric medium by a half-plane. The half-plane obstacle considered here is a semi-infinite slit, or a crack; both its surfaces are traction free and electric absorbent screens. In a generalized sense, we are dealing with the Sommerfeld problem in a piezoelectric medium.¶The coupled diffraction fields between acoustic wave and electric wave are excited by both incident acoustic wave as well as incident electric wave; and the sound soft and electric "blackness" conditions on the screens are characterized by a system of simultaneous Wiener-Hopf equations. Closed form solutions are sought by employing special techniques. Some interesting results have been obtained, such as mode conversions between acoustic wave and electric wave, novel diffraction patterns in the scattering fields, and the effect of electroacoustic head wave, as well as of surface wave-Bleustein-Gulyaev wave.¶Unlike the classical Sommerfeld problem, in which the only concern is the scattering field of electric wave, the strength of material, e.g. material toughness, is another concern here. From this perspective, relevant dynamic field intensity factors at the crack tip are derived explicitly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号