首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
An integrated model for optimum weight design of symmetrically laminated composite plates subjected to dynamic excitation is presented in this work. Optimum design procedure based on flexibility and strength criteria is presented. The objective is to determine the optimum thicknesses of the laminate layers and its optimum orientations without exhibiting any failure according to Tsai-Wu failure criterion. The finite element method, based on Mindlin plate theory, is used in conjunction with an optimization method in order to determine the optimum design. Newmark algorithm, as an implicit time integration scheme, is used to discretize the time domain and calculate the transient response of the laminated composite plate. Exterior penalty method is exploited for the constrained minimization procedure. Fletcher-Powell algorithm is used for the unconstrained minimization process. To verify the capability and efficiency of the proposed model, three examples are solved. The examples deal with flexibility and stress constraints for different boundary conditions under various dynamic excitations.  相似文献   

2.
Using a three-dimensional layerwise-finite element method, the free vibration of thick laminated circular and annular plates supported on the elastic foundation is studied. The Pasternak-type formulation is employed to model the interaction between the plate and the elastic foundation. The discretized governing equations are derived using the Hamilton’s principle in conjunction with the layerwise theory in the thickness direction, the finite element (FE) in the radial direction and trigonometric function in the circumferential direction, respectively. The fast rate of convergence of the method is demonstrated and to verify its accuracy, comparison studies with the available solutions in the literature are performed. The effects of the geometrical parameters, the material properties and the elastic foundation parameters on the natural frequency parameters of the laminated thick circular and annular plates subjected to various boundary conditions are presented.  相似文献   

3.
This paper deals with large amplitude vibration of hybrid laminated plates containing piezoelectric layers resting on an elastic foundation in thermal environments. The motion equation of the plate that includes plate-foundation interaction is based on a higher order shear deformation plate theory and solved by a two-step perturbation technique. The thermo-piezoelectric effects are also included and the material properties of both orthotropic layers and piezoelectric layers are assumed to be temperature-dependent. The numerical illustrations concern nonlinear vibration characteristics of unsymmetric cross-ply and antisymmetric angle-ply laminated plates with fully covered or embedded piezoelectric actuators under different sets of thermal and electrical loading conditions. The results show that the foundation stiffness and stacking sequence have a significant effect on the nonlinear vibration characteristics of the hybrid laminated plate. The results also reveal that the temperature rise reduces the natural frequency, but it only has a small effect on the nonlinear to linear frequency ratios of the hybrid laminated plate. The results confirm that the effect of the applied voltage on the natural frequency and the nonlinear to linear frequency ratios of the hybrid laminated plate is marginal except the plate is sufficiently thin.  相似文献   

4.
The two-dimensional problem of a simply supported laminated orthotropic strip with viscoelastic interfaces under static loading is studied. State-space formulations are developed based on the exact elasticity equations governing orthotropic media and the Kelvin–Voigt constitutive relation of interfaces. Since the response of the strip is time-dependent, the power series expansion technique is adopted to model the variations of elastic fields with time. Results show that the response of the laminated strip with viscoelastic interfaces changes remarkably with time, which is also significantly different from that of a plate with perfect interfaces or with viscous interfaces. Note that from the present analysis, the response for a laminated plate with spring-like interfaces or with viscous interfaces can be easily obtained because they are just two particular cases of the present Kelvin–Voigt model.  相似文献   

5.
Three types of partial hybrid finite elements are presented in order to set up a global/local finite element model for analysis of composite laminates. In the global/local model, a composite laminate is divided into three different regions: global, local, and transition regions. These are modeled using three different elements. In the global region, a 4-node degenerated plate/shell element is used to model the overall response of the composite laminate. In the local region, a multilayer element is used to predict detailed stress distribution. In the transition region, a multilayer transition element is used to smoothly connect the two previous elements. The global/local finite element model satisfies the compatibility of displacement at the boundary between the global region and the local region. It also satisfies the continuity of transverse stresses at interlaminar surfaces and traction conditions on the top and bottom surfaces of composite laminates. The global/local finite element model has high accuracy and efficiency for stress analysis of composite laminates. A numerical example of analysis of a laminated strip with free edge is presented to illustrate the accuracy and efficiency of the model.  相似文献   

6.
An efficient optimization procedure is proposed to detect multiple damage in structural systems. Natural frequency changes of a structure are considered as a criterion for damage presence. In order to evaluate the required natural frequencies, a finite element analysis (FEA) is utilized. A modified genetic algorithm (MGA) with two new operators (health and simulator operators) is presented to accurately detect the locations and extent of the eventual damage. An efficient correlation-based index (ECBI) as the objective function for the optimization algorithm is also introduced. The numerical results of two benchmark examples considering the measurement noise demonstrate the computational advantages of the proposed method to precisely determine the sites and the extent of multiple structural damage.  相似文献   

7.
This paper presents the free vibration analysis of piezoelectric coupled annular plates with variable thickness on the basis of the Mindlin plate theory. No work has yet been done on piezoelectric laminated plates while the thickness is variable. Two piezoelectric layers are embedded on the upper and lower surfaces of the host plate. The host plate thickness is linearly increased in the radial direction while the piezoelectric layers thicknesses remain constant along the radial direction. Different combinations of three types of boundary conditions i.e. clamped, simply supported, and free end conditions are considered at the inner and outer edges of plate. The Maxwell static electricity equation in piezoelectric layers is satisfied using a quadratic distribution of electric potential along the thickness. The natural frequencies are obtained utilizing a Rayleigh–Ritz energy approach and are validated by comparing with those obtained by finite element analysis. A good compliance is observed between numerical solution and finite element analysis. Convergence study is performed in order to verify the numerical stability of the present method. The effects of different geometrical parameters such as the thickness of piezoelectric layers and the angle of host plate on the natural frequencies of the assembly are investigated.  相似文献   

8.
Periodic structures exhibit unique dynamic characteristics that make them act as tunable mechanical filters for wave propagation. As a result, waves can propagate along the periodic structures only within specific frequency bands called the ‘pass bands’ and wave propagation is completely blocked within other frequency bands called the ‘stop bands’ or ‘band gaps’. The spectral width of these bands can be optimized using topology optimization. In this paper, topology optimization is used to maximize the fundamental natural frequency of Mindlin plates while enforcing periodicity. A finite element model for Mindlin plates is presented and used along with an optimization algorithm that accounts for the periodicity constraint in order to determine the optimal topologies of plates with various periodic configurations. The obtained results demonstrate the effectiveness of the proposed design optimization approach in generating periodic plates with optimal natural frequency and wide stop bands. The presented approach can be invaluable design tool for many structures in order to control the wave propagation in an attempt to stop/confine the propagation of undesirable disturbances.  相似文献   

9.
A method is presented for maximum strength optimum design of symmetric composite laminates subjected to in-plane and transverse loadings. The finite element method based on shear deformation theory is used for the analysis of composite laminates. Ply orientation angles are chosen as design variables. The quadratic failure criterion which is meant to predict fracture, is used as an object function for optimum stacking sequence design of a laminated plate. The Broydon-Fletcher-Goldfarb-Shanno optimization technique is employed to solve the optimization problem effectively. Numerical results are given for various loading conditions, boundary conditions, and aspect ratios. The results show that the quadratic failure criterion such as Tsai-Hill theory is effective for the optimum structural design of composite laminates.Presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October 1995).Published in Mekhanika Kompozitnykh Materialov, Vol. 31, No. 3, pp. 393–404, May–June, 1995.  相似文献   

10.
Adequate sensor placement plays a key role in such fields as system identification, structural control, damage detection and structural health monitoring of flexible structures. In recent years, interest has increased in the development of methods for determining an arrangement of sensors suitable for characterizing the dynamic behavior of a given structure. This paper describes the implementation of genetic algorithms as a strategy for optimal placement of a predefined number of sensors. The method is based on the maximization of a fitness function that evaluates sensor positions in terms of natural frequency identification effectiveness and mode shape independence under various occupation and excitation scenarios using a custom genetic algorithm. A finite element model of the stadium was used to evaluate modal parameters used in the fitness function, and to simulate different occupation and excitation scenarios. The results obtained with the genetic algorithm strategy are compared with those obtained from applying the Effective Independence and Modal Kinetic Energy sensor placement techniques. The sensor distribution obtained from the proposed strategy will be used in a structural health monitoring system to be installed in the stadium.  相似文献   

11.
12.
An element-free Galerkin method is presented to analyze isotropic and laminated composite plates. This method employs the moving least square technique to approximate functions. In the analysis procedure, a collocation method is used to enforce boundary conditions. A consistent multi-objective optimization procedure is also applied. The function introduced here consists of minimizing the weight and cost, as well as of maximizing the load. A genetic algorithm is used for the optimization process.  相似文献   

13.
A finite element formulation of the equations governing laminated anisotropic plates using Reddy's higher-order theory is presented. This simple higher-order shear deformable theory takes into account the parabolic distribution of the transverse shear deformation through the thickness of the plate and contains the same unknowns as in the first-order shear deformation theory. Finite element solutions are presented for rectangular plates of different layups, such as cross-ply, antisymmetric angle-ply, and sandwich plates with various material properties, boundaries, and plate aspect ratios. The numerical results are compared with the available closed-form results, the 3-D linear elasticity theory results, and the other available numerical results. A comparison is also made with test data from a laminated cantilever plate.  相似文献   

14.
Three-staged cutting patterns are often used in dividing large plates into small rectangular items. Vertical cuts separate the plate into segments in the first stage, horizontal cuts split each segment into strips in the second stage, and vertical cuts divide each strip into items in the third stage. A heuristic algorithm for generating constrained three-staged patterns is presented in this paper. The optimization objective is to maximize the pattern value that is the total value of the included items, while the frequency of each item type should not exceed the specified upper bound. The algorithm uses an exact procedure to generate strips and two heuristic procedures to generate segments and the pattern. The pattern-generation procedure first determines an initial solution and then uses its information to generate more segments to extend the solution space. Computational results show that the algorithm is effective in improving solution quality.  相似文献   

15.
Bending and free vibration behaviour of laminated soft core skew sandwich plate with stiff laminate face sheets is investigated using a recently developed C0 finite element (FE) model based on higher order zigzag theory (HOZT) in this paper. The in-plane displacement fields are assumed as a combination of a linear zigzag function with different slopes at each layer and a cubically varying function over the entire thickness. The out of plane displacement is considered to be quadratic within the core and constant in the face sheets. The plate theory ensures a shear stress-free condition at the top and bottom surfaces of the plate. Thus, the plate theory has all of the features required for accurate modelling of laminated skew sandwich plates. As very few element model based on this plate theory (HOZT) exist and they possess certain disadvantages, an attempt has been made to check the applicability of the refined element model. The nodal field variables are chosen in such a manner that there is no need to impose any penalty stiffness in the formulation. Refined C0 finite element model has been utilized to study some interesting problems on static and free vibration analysis of laminated skew sandwich plates.  相似文献   

16.
An uncoupled dynamic thermoelastic problem for laminated composite plates has been considered. The hypotheses used take into account the nonlinear distribution of temperature and displacements over the thickness of a laminated plate. On the basis of these hypotheses a quasi-three-dimensional (layerwise) theory is constructed that makes it possible to investigate the internal thermal and stress-strain states, as well as the edge effects of the boundary layer type for laminated plates. Systems of the heat conduction and motion equations are derived using the variational method. The order of the equations depends on the number of layers and terms in expansions of temperature and displacements of each layer. An analytical solution of the dynamic thermoelastic problem is presented for a cross-ply laminated rectangular plate with simply supported edges. The reliability of the results is confirmed by a comparison with the known exact solutions. The results based on the proposed theory can be used for verifying various two-dimensional plate theories when solving the dynamic thermoelastic problems for laminated composite plates.  相似文献   

17.
In the present study, a nonlocal continuum model based on the Eringen’s theory is developed for vibration analysis of orthotropic nano-plates with arbitrary variation in thickness. Variational principle and Ritz functions are employed to calculate the size dependent natural frequencies of non-uniform nano-plates on the basis of nonlocal classical plate theory (NCLPT). The Ritz functions eliminate the need for mesh generation and thus large degrees of freedom arising in discretization methods such as finite element (FE). Effect of thickness variation on natural frequencies is examined for different nonlocal parameters, mode numbers, geometries and boundary conditions. It is found that thickness variation accompanying small scale effect has a noticeable effect on natural frequencies of non-uniform plates at nano scale. Also a comparison with finite element solution is performed to show the ability of the Ritz functions in fast converging to the exact results. It is anticipated that presented results can be used as a helpful source in vibration design and frequency optimization of non-uniform small scaled plates.  相似文献   

18.
This paper applies the asymptotic perturbation approach (APA) to obtain a simple analytical expression for the free vibration analysis of non-uniform and non-homogenous beams with different boundary conditions. A linear governing equation of non-uniform and non-homogeneous beams is obtained based on the Euler–Bernoulli beam theory. The perturbative theory is employed to derive an asymptotic solution of the natural frequency of the beam. Finally, numerical solutions based on the analytical method are illustrated, where the effect of a variable width ratio on the natural frequency is analyzed. To verify the accuracy of the present method, two examples, piezoelectric laminated trapezoidal beam and axially functionally graded tapered beam, are presented. The results are compared with those results obtained from the finite element method (FEM) simulation and the published literature, respectively, and a good agreement is observed for lower-order beam frequencies.  相似文献   

19.
A simple C0 isoparametric finite element formulation based on a set of higher-order displacement models for the analysis of symmetric and asymmetric multilayered composite and sandwich beams subjected to sinusoidal loading is presented. These theories do not require the usual shear correction coefficients which are generally associated with the Timoshenko theory. The four-noded Lagrangian cubic element with kinematic models having four, five and six degrees of freedom per node is used. A computer algorithm is developed which incorporates realistic prediction of transverse interlaminar stresses from equilibrium equations. By comparing the results obtained with the elasticity solution and the CPT (classical laminated plate theory) it is shown that the present higher-order theories give a much better approximation to the behaviour of laminated composite beams, both thick and thin. In addition numerical results for unsymmetric sandwich beams are presented which may serve as benchmark for future investigations.  相似文献   

20.
本文研究两对边简支,其它两边任意支承,板的刚度沿简支边方向按任意规律变化的矩形板.采用文[1]提出的有限板条元素法求解,其特点与习用的有限元法或有限单条法不同.不是先建立单元或单条的刚度矩阵,然后拼装总刚阵再求解,而是确立各个板条元素的变位和内力的传播关系.实例计算表明,该法是一个简便有效的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号