首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An adaptive multi-stage optimization method utilizing a modified particle swarm optimization (MPSO) is proposed here to identify the multiple damage cases of structural systems. First the structural damage problem is defined as a standard optimization problem. An efficient objective function considering the first few natural frequencies of a structure, before and after damage, is utilized for optimization. A modified particle swarm optimization (MPSO) dealing with real values of damage variables is introduced to solve the optimization problem. In order to assess the performance of the proposed method, some illustrative examples with and without considering the measurement noise are tested. Numerical results demonstrate the high accuracy of the method proposed for determining the site and severity of multiple damage cases in the structural systems.  相似文献   

2.
Use of optimization search algorithms is recognized as an efficient method for solving structural damage identification problems. Although these algorithms demonstrated their robustness to identify the location and extent of multiple damages in structural systems, they impose so much computational efforts to the damage assessing process that it reduces their attraction. In this paper by utilizing the concept of residual force vector, an efficient approach based on a Truss Element Damage Index (TEDI) is defined to assist in a fast and reliable prediction of damaged elements. Based on the proposed technique, the first step focuses on location detection of most probable damaged members. The healthy members will then be eliminated from the total list of variables. This can reduce the computational effort significantly. In the second step to identify damaged locations and severities, the Genetic Algorithm is employed to search for the optimum solution in the new search space resulted from the first step. Three test examples are considered to investigate the efficiency of proposed method for damage identification.  相似文献   

3.
An important approach in multiple criteria linear programming is the optimization of some function over the efficient or weakly-efficient set. This is a very difficult nonconvex optimization problem, even for the case that the function to be optimized is linear. In this article we consider the problem of maximizing a concave function over the efficient or weakly-efficient set. We show that this problem can essentially be formulated as a special global optimization problem in the space of the extreme criteria of the underlying multiple criteria linear program. An algorithm of branch and bound type is proposed for solving the resulting problem.  相似文献   

4.
《Applied Mathematical Modelling》2014,38(9-10):2661-2672
An efficient method is proposed to find multiple damage locations in structural systems. The change of static strain energy (SSE) due to damage is used to establish an indicator for determining the damage location. The SSE is determined using the static analysis information extracted from a finite element modeling. In order to assess the performance of the proposed method for structural damage detection, some benchmark structures having a number of damage scenarios are considered. Numerical results demonstrate that the method can accurately locate the structural damage when considering the measurement noise. The efficiency of the proposed indicator for finding the damage site is also compared with a modal strain energy based index (MSEBI) provided in the literature.  相似文献   

5.
We present an efficient method for structural damage detection using natural frequencies. The method, which is based on sensitivity analysis of the structure, consists of two main stages. In the first stage, the structural elements are ordered based on their damage probability into a vector referred to as elements damage probability ordering vector (EDPOV). In the second stage, a rather small subset of EDPOV elements are judiciously selected to form a nonlinear system of equations, which are subsequently solved to detect potential damages. In the second stage, the procedure of subset selecting and solving iterates until a feasible solution is achieved. In order to assess the merits of the proposed method some illustrative cases are studied. Numerical results demonstrate the high efficiency of the proposed algorithm compared to those found in the literature.  相似文献   

6.
A phased array radar (PAR) is used to detect new targets and update the information of those detected targets. Generally, a large number of tasks need to be performed by a single PAR in a finite time horizon. In order to utilize the limited time and the energy resources, it is necessary to provide an efficient task scheduling algorithm. However, the existing radar task scheduling algorithms can't be utilized to release the full potential of the PAR, because of those disadvantages such as full PAR task structure ignored, only good performance in one aspect considered and just heuristic or the meta-heuristic method utilized. Aiming at above issues, an optimization model for the PAR task scheduling and a hybrid adaptively genetic (HAGA) algorithm are proposed. The model considers the full PAR task structure and integrates multiple principles of task scheduling, so that multi-aspect performance can be guaranteed. The HAGA incorporates the improved GA to explore better solutions while using the heuristic task interleaving algorithm to utilize wait intervals to interleave subtasks and calculate fitness values of individuals in efficient manners. Furthermore, the efficiency and the effectiveness of the HAGA are both improved by adopting chaotic sequences for the population initialization, the elite reservation and the mixed ranking selection, as well as designing the adaptive crossover and the adaptive mutation operators. The simulation results demonstrate that the HAGA possesses merits of global exploration, faster convergence, and robustness compared with three state-of-art algorithms—adaptive GA, hybrid GA and highest priority and earliest deadline first heuristic (HPEDF) algorithm.  相似文献   

7.
Subset simulation is an efficient Monte Carlo technique originally developed for structural reliability problems, and further modified to solve single-objective optimization problems based on the idea that an extreme event (optimization problem) can be considered as a rare event (reliability problem). In this paper subset simulation is extended to solve multi-objective optimization problems by taking advantages of Markov Chain Monte Carlo and a simple evolutionary strategy. In the optimization process, a non-dominated sorting algorithm is introduced to judge the priority of each sample and handle the constraints. To improve the diversification of samples, a reordering strategy is proposed. A Pareto set can be generated after limited iterations by combining the two sorting algorithms together. Eight numerical multi-objective optimization benchmark problems are solved to demonstrate the efficiency and robustness of the proposed algorithm. A parametric study on the sample size in a simulation level and the proportion of seed samples is performed to investigate the performance of the proposed algorithm. Comparisons are made with three existing algorithms. Finally, the proposed algorithm is applied to the conceptual design optimization of a civil jet.  相似文献   

8.
A considerable number of differential evolution variants have been proposed in the last few decades. However, no variant was able to consistently perform over a wide range of test problems. In this paper, propose two novel differential evolution based algorithms are proposed for solving constrained optimization problems. Both algorithms utilize the strengths of multiple mutation and crossover operators. The appropriate mix of the mutation and crossover operators, for any given problem, is determined through an adaptive learning process. In addition, to further accelerate the convergence of the algorithm, a local search technique is applied to a few selected individuals in each generation. The resulting algorithms are named as Self-Adaptive Differential Evolution Incorporating a Heuristic Mixing of Operators. The algorithms have been tested by solving 60 constrained optimization test instances. The results showed that the proposed algorithms have a competitive, if not better, performance in comparison to the-state-of-the-art algorithms.  相似文献   

9.
The spectral analysis of an efficient step-by-step direct integration algorithm for the structural dynamic equation is presented. The proposed algorithm is formulated in terms of two Hermitian finite difference operators of fifth-order local truncation error and it is unconditionally stable with no numerical damping presenting a fourth-order truncation error for period dispersion (global error). In addition, although it is in competition with higher-order algorithms presented in the literature, the computational effort is similar to that of the classical second-order Newmark’s method. The numerical application for nonlinear structural dynamic problems is also considered.  相似文献   

10.
Heuristic techniques of optimization can be useful in designing complex experiments, such as microarray experiments. They have advantages over the traditional methods of optimization, particularly in situations where the search space is discrete. In this paper, a search procedure based on a genetic algorithm is proposed to find optimal (efficient) designs for both one- and multi-factor experiments. A genetic algorithm is a heuristic optimization method that exploits the biological evolution to obtain a solution of the problem. As an example, optimal designs for \(3\times 2\) factorial microarray experiments are presented for different numbers of arrays and for various sets of research questions. Comparisons between different operators of the genetic algorithm are performed by simulation studies.  相似文献   

11.
杜晨  彭雄奇 《应用数学和力学》2022,43(12):1313-1323
由于具备高的比强度、比刚度,利用连续纤维增强复合材料代替传统金属材料以实现结构轻量化正受到设计者们的广泛关注。然而,结构的复杂性给复合材料的铺层设计与优化带来了很大的挑战。针对航空用复合材料铺层设计约束多的问题,通过逐步构建设计变量准确表达结构的铺层信息。基于经典遗传算法框架,结合各设计变量特点,定义了铺层优化算法中的遗传算子,通过引入“修复”策略保证了每一代解都能满足设计约束,分布在可行域区间内。最后利用精英保留策略提高了算法的局部寻优能力,可以降低复杂复合材料结构铺层设计的计算成本。通过解决经典benchmark问题并与已有优化结果的比较,验证了前述铺层优化算法的全局、局部寻优能力,为工程实际中的复合材料铺层设计优化提供了理论支撑。  相似文献   

12.
An optimization model with one linear objective function and fuzzy relation equation constraints was presented by Fang and Li (1999) as well as an efficient solution procedure was designed by them for solving such a problem. A more general case of the problem, an optimization model with one linear objective function and finitely many constraints of fuzzy relation inequalities, is investigated in this paper. A new approach for solving this problem is proposed based on a necessary condition of optimality given in the paper. Compared with the known methods, the proposed algorithm shrinks the searching region and hence obtains an optimal solution fast. For some special cases, the proposed algorithm reaches an optimal solution very fast since there is only one minimum solution in the shrunk searching region. At the end of the paper, two numerical examples are given to illustrate this difference between the proposed algorithm and the known ones.  相似文献   

13.
Algorithms inspired by swarm intelligence have been used for many optimization problems and their effectiveness has been proven in many fields. We propose a new swarm intelligence algorithm for structural learning of Bayesian networks, BFO-B, based on bacterial foraging optimization. In the BFO-B algorithm, each bacterium corresponds to a candidate solution that represents a Bayesian network structure, and the algorithm operates under three principal mechanisms: chemotaxis, reproduction, and elimination and dispersal. The chemotaxis mechanism uses four operators to randomly and greedily optimize each solution in a bacterial population, then the reproduction mechanism simulates survival of the fittest to exploit superior solutions and speed convergence of the optimization. Finally, an elimination and dispersal mechanism controls the exploration processes and jumps out of a local optima with a certain probability. We tested the individual contributions of four algorithm operators and compared with two state of the art swarm intelligence based algorithms and seven other well-known algorithms on many benchmark networks. The experimental results verify that the proposed BFO-B algorithm is a viable alternative to learn the structures of Bayesian networks, and is also highly competitive compared to state of the art algorithms.  相似文献   

14.
The problem of minimizing a convex function over the difference of two convex sets is called ‘reverse convex program’. This is a typical problem in global optimization, in which local optima are in general different from global optima. Another typical example in global optimization is the optimization problem over the efficient set of a multiple criteria programming problem. In this article, we investigate some special cases of optimization problems over the efficient set, which can be transformed equivalently into reverse convex programs in the space of so-called extreme criteria of multiple criteria programming problems under consideration. A suitable algorithm of branch and bound type is then established for globally solving resulting problems. Preliminary computational results with the proposed algorithm are reported.  相似文献   

15.
An efficient method to obtain the worst quasi-periodic vibration response of nonlinear dynamical systems with uncertainties is presented. Based on the multi-dimensional harmonic balance method, a constrained, nonlinear optimization problem with the nonlinear equality constraints is derived. The MultiStart optimization algorithm is then used to optimize the vibration response within the specified range of physical parameters. In order to illustrate the efficiency and ability of the proposed method, several numerical examples are illustrated. The proposed method is then applied to a rotor system with multiple frequency excitations (unbalance and support) under several physical parameters uncertainties. Numerical examples show that the proposed approach is valid and effective for analyzing strongly nonlinear vibration problems with different types of nonlinearities in the presence of uncertainties.  相似文献   

16.
In this paper, a novel biologically-inspired algorithm, namely krill herd (KH) is proposed for solving optimization tasks. The KH algorithm is based on the simulation of the herding behavior of krill individuals. The minimum distances of each individual krill from food and from highest density of the herd are considered as the objective function for the krill movement. The time-dependent position of the krill individuals is formulated by three main factors: (i) movement induced by the presence of other individuals (ii) foraging activity, and (iii) random diffusion. For more precise modeling of the krill behavior, two adaptive genetic operators are added to the algorithm. The proposed method is verified using several benchmark problems commonly used in the area of optimization. Further, the KH algorithm is compared with eight well-known methods in the literature. The KH algorithm is capable of efficiently solving a wide range of benchmark optimization problems and outperforms the exciting algorithms.  相似文献   

17.
A multilevel image thresholding using the honey bee mating optimization   总被引:1,自引:0,他引:1  
Image thresholding is an important technique for image processing and pattern recognition. Many thresholding techniques have been proposed in the literature. Among them, the maximum entropy thresholding (MET) has been widely applied. In this paper, a new multilevel MET algorithm based on the technology of the honey bee mating optimization (HBMO) is proposed. This proposed method is called the maximum entropy based honey bee mating optimization thresholding (MEHBMOT) method. Three different methods such as the particle swarm optimization (PSO), the hybrid cooperative-comprehensive learning based PSO algorithm (HCOCLPSO) and the Fast Otsu’s method are also implemented for comparison with the results of the proposed method. The experimental results manifest that the proposed MEHBMOT algorithm can search for multiple thresholds which are very close to the optimal ones examined by the exhaustive search method. In comparison with the other three thresholding methods, the segmentation results using the MEHBMOT algorithm is the best and its computation time is relatively low. Furthermore, the convergence of the MEHBMOT algorithm can rapidly achieve and the results validate that the proposed MEHBMOT algorithm is efficient.  相似文献   

18.
A problem of assigning multiple agents to simultaneously perform cooperative tasks on consecutive targets is posed as a new combinatorial optimization problem. The investigated scenario consists of multiple ground moving targets prosecuted by a team of unmanned aerial vehicles (UAVs). The team of agents is heterogeneous, with each UAV carrying designated sensors and all but one carry weapons as well. To successfully prosecute each target it needs to be simultaneously tracked by two UAVs and attacked by a third UAV carrying a weapon. Only for small-sized scenarios involving not more than a few vehicles and targets the problem can be solved in sufficient time using classical combinatorial optimization methods. For larger-sized scenarios the problem cannot be solved in sufficient time using these methods due to timing constraints on the simultaneous tasks and the coupling between task assignment and path planning for each UAV. A genetic algorithm (GA) is proposed for efficiently searching the space of feasible solutions. A matrix representation of the chromosomes simplifies the encoding process and the application of the genetic operators. To further simplify the encoding, the chromosome is composed of sets of multiple genes, each corresponding to the entire set of simultaneous assignments on each target. Simulation results show the viability of the proposed assignment algorithm for different sized scenarios. The sensitivity of the performance to variations in the GA tuning parameters is also investigated.  相似文献   

19.
On the basis of modularity optimization, a genetic algorithm is proposed to detect community structure in networks by defining a local search operator. The local search operator emphasizes two features: one is that the connected nodes in a network should be located in the same community, while the other is “local selection” inspired by the mechanisms of efficient message delivery underlying the small‐world phenomenon. The results of community detection for some classic networks, such as Ucinet and Pajek networks, indicate that our algorithm achieves better community structure than other methodologies based on modularity optimization, such as the algorithms based on betweenness analysis, simulated annealing, or Tasgin and Bingol's genetic algorithm. © 2009 Wiley Periodicals, Inc. Complexity, 2010  相似文献   

20.
We consider the target level method for solving linear multi-criterion maximization problems. The method finds an efficient (Pareto-optimal) vector estimate that is closest in the Chebyshev metric to the target level point specified by the decision maker. The proposed method describes (parametrizes and approximates) the efficient set. In the linear case the number of scalar optimization problems needed to describe the set of efficient vector estimates is substantially reduced. A formula is derived which, under certain conditions, can be used to compute efficient vector estimates without solving any optimization problems. An algorithm based on these results is proposed for two-criterion problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号