首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with an initial boundary value problem for strictly convex conservation laws whose weak entropy solution is in the piecewise smooth solution class consisting of finitely many discontinuities. By the structure of the weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux Nedelec, we give a construction method to the weak entropy solution of the initial boundary value problem. Compared with the initial value problem, the weak entropy solution of the initial boundary value problem includes the following new interaction type: an expansion wave collides with the boundary and the boundary reflects a new shock wave which is tangent to the boundary. According to the structure and some global estimates of the weak entropy solution, we derive the global L^1-error estimate for viscous methods to this initial boundary value problem by using the matching travelling wave solutions method. If the inviscid solution includes the interaction that an expansion wave collides with the boundary and the boundary reflects a new shock wave which is tangent to the boundary, or the inviscid solution includes some shock wave which is tangent to the boundary, then the error of the viscosity solution to the inviscid solution is bounded by O(ε^1/2) in L^1-norm; otherwise, as in the initial value problem, the L^1-error bound is O(ε| In ε|).  相似文献   

2.
利用匹配渐近展开法,讨论了一类四阶非线性方程的具有两个边界层的奇摄动边值问题.引进伸长变量,根据边界条件与匹配原则,在一定的可解性条件下,给出了外部解和左右边界层附近的内层解,得到了该问题的二阶渐近解,并举例说明了这类非线性问题渐近解的存在性.  相似文献   

3.
A numerical boundary integral scheme is proposed for the solution of the system of field equations of plane, linear elasticity in stresses for homogeneous, isotropic media in the domain bounded by an ellipse under mixed boundary conditions. The stresses are prescribed on one half of the ellipse, while the displacements are given on the other half. The method relies on previous analytical work within the Boundary Integral Method [1], [2].The considered problem with mixed boundary conditions is replaced by two subproblems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way and the problem at this stage is reduced to the solution of a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution inside the domain, and the unknown boundary values of stresses or displacements on proper parts of the boundary.On the basis of the obtained results, it is inferred that the tangential stress component on the fixed part of the boundary has a singularity at each of the two separation points, thought to be of logarithmic type. A tentative form for the singular solution is proposed to calculate the full solution in bulk directly from the given boundary conditions using the well-known Boundary Collocation Method. It is shown that this addition substantially decreases the error in satisfying the boundary conditions on some interval not containing the singular points.The obtained results are discussed and boundary curves for unknown functions are provided, as well as three-dimensional plots for quantities of practical interest. The efficiency of the used numerical schemes is discussed, in what concerns the number of boundary nodes needed to calculate the approximate solution.  相似文献   

4.
Micro/nano sliding plate problem with Navier boundary condition   总被引:1,自引:0,他引:1  
For Newtonian flow through micro or nano sized channels, the no-slip boundary condition does not apply and must be replaced by a condition which more properly reflects surface roughness. Here we adopt the so-called Navier boundary condition for the sliding plate problem, which is one of the fundamental problems of fluid mechanics. When the no-slip boundary condition is used in the study of the motion of a viscous Newtonian fluid near the intersection of fixed and moving rigid plane boundaries, singular pressure and stress profiles are obtained, leading to a non-integrable force on each boundary. Here we examine the effects of replacing the no-slip boundary condition by a boundary condition which attempts to account for boundary slip due to the tangential shear at the boundary. The Navier boundary condition, possesses a single parameter to account for the slip, the slip length ℓ, and two solutions are obtained; one integral transform solution and a similarity solution which is valid away from the corner. For the former the tangential stress on each boundary is obtained as a solution of a set of coupled integral equations. The particular case solved is right-angled corner flow and equal slip lengths on each boundary. It is found that when the slip length is non-zero the force on each boundary is finite. It is also found that for a suffciently large distance from the corner the tangential stress on each boundary is equal to that of the classical solution. The similarity solution involves two restrictions, either a right-angled corner flow or a dependence on the two slip lengths for each boundary. When the tangential stress on each boundary is calculated from the similarity solution, it is found that the similarity solution makes no additional contribution to the tangential stress of that of the classical solution, thus in agreement with the findings of the integral transform solution. Values of the radial component of velocity along the line θ = π /4 for increasing distance from the corner for the similarity and integral transform solutions are compared, confirming their agreement for sufficiently large distances from the corner. (Received: November 9, 2005)  相似文献   

5.
In this study, we use the addition theorem and superposition technique to solve the scattering problem with multiple circular cylinders arising from point sound sources. Using the superposition technique, the problem can be decomposed into two individual parts. One is the free‐space fundamental solution. The other is a typical boundary value problem (BVP) with specified boundary conditions derived from the addition theorem by translating the fundamental solution. Following the success of null‐field boundary integral formulation to solve the typical BVP of the Helmholtz equation with Fourier densities, the second‐part solution is easily obtained after collocating the observation point exactly on the real boundary and matching the boundary condition. The total solution is obtained by superimposing the two parts which are the fundamental solution and the semianalytical solution of the Helmholtz problem. An example was demonstrated to validate the present approach. The parameter study of size and spacing between cylinders are addressed. The results are well compared with the available theoretical solutions and experimental data. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011  相似文献   

6.
7.
This paper presents an efficient method of solving Queen's linearized equations for steady plane flow of an incompressible, viscous Newtonian fluid past a cylindrical body of arbitrary cross-section. The numerical solution technique is the well known direct boundary element method. Use of a fundamental solution of Oseen's equations, the ‘Oseenlet’, allows the problem to be reduced to boundary integrals and numerical solution then only requires boundary discretization. The formulation and solution method are validated by computing the net forces acting on a single circular cylinder, two equal but separated circular cylinders and a single elliptic cylinder, and comparing these with other published results. A boundary element representation of the full Navier-Stokes equations is also used to evaluate the drag acting on a single circular cylinder by matching with the numerical Oseen solution in the far field.  相似文献   

8.
Summary The stress distribution obtained by solving the two-dimensional problem in an anisotropic medium, with boundary conditions of a concentrated tangential load acting on the boundary of a semi-infinite plate, is purely radial. The solution is given in closed form and is combined with the solution for a concentrated normal load to solve the problem of an inclined force acting on the boundary.  相似文献   

9.
In this paper, a powerful analytical method, called homotopy analysis method (HAM) is used to obtain the analytical solution for a nonlinear ordinary deferential equation that often appear in boundary layers problems arising in heat and mass transfer which these kinds of the equations contain infinity boundary condition. The boundary layer approximations of fluid flow and heat transfer of vertical full cone embedded in porous media give us the similarity solution for full cone subjected to surface heat flux boundary conditions. Nonlinear ODE which is obtained by similarity solution has been solved through homotopy analysis method (HAM). The main objective is to propose alternative methods of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. The obtained analytical solution in comparison with the numerical ones represents a remarkable accuracy. The results also indicate that HAM can provide us with a convenient way to control and adjust the convergence region.  相似文献   

10.
The solution of the American option valuation problem is the solution of a parabolic partial differential equation satisfying free boundary conditions. The free boundary represents the critical price, at which the option should be exercised. In this paper the free boundary is determined by an algebraic relation and an approximate solution derived. A suitable modification of the approximate solution gives the exact solution. The uniqueness of the free boundary implies the expression determined by the algebraic relation is the true critical price  相似文献   

11.
An explicit solution of the pseudo-hyperbolic initial boundary value problem with a mixed boundary condition has been constructed. The problem describes the propagation of non-stationary internal waves in a stratified and rotational fluid. The generation of waves is caused by small oscillations of double-sided plates beginning at time t = 0. Dynamic pressure is specified on one set of plates and this yields the first boundary condition. Normal velocities are specified on another set of plates and this leads to an analogue of the second boundary condition with time derivatives. The solution has been obtained by the method of non-classical time-dependent dynamic potentials. The uniqueness of the solution has been studied.  相似文献   

12.
In this paper an inverse method for solving elastostatic problems with incomplete boundary conditions is presented. In general, inverse problems are ill-posed boundary value problems whose stability and uniqueness of solution and sensitivity-based formulations require additional constraints. In the development we use the Betti-reciprocal theorem to represent the boundary traction field in terms of the boundary and field displacements in an integral form. Initially, we assume the unknown boundary conditions and deformations required to solve the problem. In this way we equate the work done by the exact solution (unknown) to the work done by an assumed solution. Discretizing the resulting equations and using an iterative procedure each step in the solution process becomes the solution to a well-posed problem. Thus, with sufficient perturbations the correct boundary conditions are reconstructed.  相似文献   

13.
讨论了一类具有积分边界条件的二阶常微分方程非局部边值问题的数值解.对非局部积分边界条件采用了离散的多点边值问题进行逼近,通过常系数情况下解的局部性质,建立了这类边值问题的指数型差分格式,并且给出了格式的误差分析,证明了格式是一致收敛的.  相似文献   

14.
This paper is concerned with the inflow problem for the one-dimensional compressible Navier–Stokes equations. For such a problem, Matsumura and Nishihara showed in [10] that there exists boundary layer solution to the inflow problem, and that both the boundary layer solution, the rarefaction wave, and the superposition of boundary layer solution and rarefaction wave are nonlinear stable under small initial perturbation. The main purpose of this paper is to show that similar stability results for the boundary layer solution and the supersonic rarefaction wave still hold for a class of large initial perturbation which can allow the initial density to have large oscillation. The proofs are given by an elementary energy method and the key point is to deduce the desired lower and upper bounds on the density function.  相似文献   

15.
We consider the Cauchy problem with spatially localized initial data for a two-dimensional wave equation with variable velocity in a domain Ω. The velocity is assumed to degenerate on the boundary ?Ω of the domain as the square root of the distance to ?Ω. In particular, this problems describes the run-up of tsunami waves on a shallow beach in the linear approximation. Further, the problem contains a natural small parameter (the typical source-to-basin size ratio) and hence admits analysis by asymptotic methods. It was shown in the paper “Characteristics with singularities and the boundary values of the asymptotic solution of the Cauchy problem for a degenerate wave equation” [1] that the boundary values of the asymptotic solution of this problem given by a modified Maslov canonical operator on the Lagrangian manifold formed by the nonstandard characteristics associatedwith the problemcan be expressed via the canonical operator on a Lagrangian submanifold of the cotangent bundle of the boundary. However, the problem as to how this restriction is related to the boundary values of the exact solution of the problem remained open. In the present paper, we show that if the initial perturbation is specified by a function rapidly decaying at infinity, then the restriction of such an asymptotic solution to the boundary gives the asymptotics of the boundary values of the exact solution in the uniform norm. To this end, we in particular prove a trace theorem for nonstandard Sobolev type spaces with degeneration at the boundary.  相似文献   

16.
A singularly perturbed boundary value problem with weak nonlinearity in the case when the degenerate equation has a multiple root is studied. The asymptotic approximation of the solution is constructed by the modified boundary layer function method. Based on the comparison principle, there exist multizonal boundary layers in the neighborhood of the endpoints. The existence of a solution is proved by using the method of asymptotic differential inequalities.  相似文献   

17.
The author surveys a few examples of boundary layers for which the Prandtl boundary layer theory can be rigorously validated. All of them are associated with the incompressible Navier-Stokes equations for Newtonian fluids equipped with various Dirichlet boundary conditions (specified velocity). These examples include a family of (nonlinear 3D) plane parallel flows, a family of (nonlinear) parallel pipe flows, as well as flows with uniform injection and suction at the boundary. We also identify a key ingredient in establishing the validity of the Prandtl type theory, i.e., a spectral constraint on the approximate solution to the Navier-Stokes system constructed by combining the inviscid solution and the solution to the Prandtl type system. This is an additional difficulty besides the wellknown issue related to the well-posedness of the Prandtl type system. It seems that the main obstruction to the verification of the spectral constraint condition is the possible separation of boundary layers. A common theme of these examples is the inhibition of separation of boundary layers either via suppressing the velocity normal to the boundary or by injection and suction at the boundary so that the spectral constraint can be verified. A meta theorem is then presented which covers all the cases considered here.  相似文献   

18.
The smouldering combustion is modeled as a free boundary problem here. By using the Duvaut's transform, the problem is reduced to a variational inequality. Existence and uniqueness are established. Tbe properties of the free boundary are studied in various cases. The asymptotic behavior of the free boundary with respect to the parameter is rigorously proved, which confirms the result of a previous work by J. Adler and D. M. Herbert, obtained by using asymptotic expansion. Furthermore, we show that the time dependent problem will actually converge to a travelling wave solution if the boundary data converge to the corresponding travelling wave solution.  相似文献   

19.
In this paper, we propose a simple and robust numerical method for the forced Korteweg–de Vries (fKdV) equation which models free surface waves of an incompressible and inviscid fluid flow over a bump. The fKdV equation is defined in an infinite domain. However, to solve the equation numerically we must truncate the infinite domain to a bounded domain by introducing an artificial boundary and imposing boundary conditions there. Due to unsuitable artificial boundary conditions, most wave propagation problems have numerical difficulties (e.g., the truncated computational domain must be large enough or the numerical simulation must be terminated before the wave approaches the artificial boundary for the quality of the numerical solution). To solve this boundary problem, we develop an absorbing non-reflecting boundary treatment which uses outward wave velocity. The basic idea of the proposing algorithm is that we first calculate an outward wave velocity from the solutions at the previous and present time steps and then we obtain a solution at the next time step on the artificial boundary by moving the solution at the present time step with the velocity. And then we update solutions at the next time step inside the domain using the calculated solution on the artificial boundary. Numerical experiments with various initial conditions for the KdV and fKdV equations are presented to illustrate the accuracy and efficiency of our method.  相似文献   

20.
We consider the asymptotic solution of the Tonks—Langmuir integro-different equation with an Emmert kernel, which describes the behavior of the potential both inside the main plasma volume and in a thin boundary layer. Equations of this type are singularly perturbed due to the small coefficient at the highest order (second) derivative. The asymptotic solution is obtained by the boundary function method. Equations are derived for the first two coefficients in the regular expansion series and in the boundary function expansion. The equation for the first coefficient of the regular series has only a trivial solution. Second-order differential equations are obtained for the first two boundary functions. The equation for the first boundary function is solved numerically on a discrete grid with locally uniform spacing. An approximate analytical expression for the first boundary function is obtained from the linearized equation. This solution adequately describes the behavior of the potential on small distances only. __________ Translated from Prikladnaya Matematika i Informatika, No. 19, pp. 21–40, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号