首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergence theorems. More specifically, necessary and sufficient moment conditions are provided for complete moment convergence of the form ∑n≥n0 n^r-2-1/pq anE(max1≤k≤n|Sk|^1/q-∈bn^1/qp)^+〈∞to hold where r 〉 1, q 〉 0 and either n0 = 1,0 〈 p 〈 2, an = 1,bn = n or n0 = 3,p = 2, an = 1 (log n) ^1/2q, bn=n log n. These results extend results of Chow and of Li and Spataru from the indepen- dent and identically distributed case to the identically distributed negatively associated setting. The complete moment convergence is also shown to be equivalent to a form of complete integral convergence.  相似文献   

2.
Let X,X(1),X(2),... be independent identically distributed random variables with mean zero and a finite variance. Put S(n) = X(1) + ... + X(n), n = 1, 2,..., and define the Markov stopping time η y = inf {n ≥ 1: S(n) ≥ y} of the first crossing a level y ≥ 0 by the random walk S(n), n = 1, 2,.... In the case $ \mathbb{E} $ \mathbb{E} |X|3 < ∞, the following relation was obtained in [8]: $ \mathbb{P}\left( {\eta _0 = n} \right) = \frac{1} {{n\sqrt n }}\left( {R + \nu _n + o\left( 1 \right)} \right) $ \mathbb{P}\left( {\eta _0 = n} \right) = \frac{1} {{n\sqrt n }}\left( {R + \nu _n + o\left( 1 \right)} \right) as n → ∞, where the constant R and the bounded sequence ν n were calculated in an explicit form. Moreover, there were obtained necessary and sufficient conditions for the limit existence $ H\left( y \right): = \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) $ H\left( y \right): = \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) for every fixed y ≥ 0, and there was found a representation for H(y). The present paper was motivated by the following reason. In [8], the authors unfortunately did not cite papers [1, 5] where the above-mentioned relations were obtained under weaker restrictions. Namely, it was proved in [5] the existence of the limit $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) for every fixed y ≥ 0 under the condition $ \mathbb{E} $ \mathbb{E} X 2 < ∞ only; In [1], an explicit form of the limit $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _0 = n} \right) $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _0 = n} \right) was found under the same condition $ \mathbb{E} $ \mathbb{E} X 2 < ∞ in the case when the summand X has an arithmetic distribution. In the present paper, we prove that the main assertion in [5] fails and we correct the original proof. It worth noting that this corrected version was formulated in [8] as a conjecture.  相似文献   

3.
In this paper, the sharp estimates of all homogeneous expansions for f are established, where f(z) = (f 1(z), f 2(z), …, f n (z))′ is a k-fold symmetric quasi-convex mapping defined on the unit polydisk in ℂ n and
$ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered} $ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered}   相似文献   

4.
Let u=u(x,t,uo)represent the global solution of the initial value problem for the one-dimensional fluid dynamics equation ut-εuxxt+δux+γHuxx+βuxxx+f(u)x=αuxx,u(x,0)=uo(x), whereα〉0,β〉0,γ〉0,δ〉0 andε〉0 are constants.This equation may be viewed as a one-dimensional reduction of n-dimensional incompressible Navier-Stokes equations. The nonlinear function satisfies the conditions f(0)=0,|f(u)|→∞as |u|→∞,and f∈C^1(R),and there exist the following limits Lo=lim sup/u→o f(u)/u^3 and L∞=lim sup/u→∞ f(u)/u^5 Suppose that the initial function u0∈L^I(R)∩H^2(R).By using energy estimates,Fourier transform,Plancherel's identity,upper limit estimate,lower limit estimate and the results of the linear problem vt-εv(xxt)+δvx+γHv(xx)+βv(xxx)=αv(xx),v(x,0)=vo(x), the author justifies the following limits(with sharp rates of decay) lim t→∞[(1+t)^(m+1/2)∫|uxm(x,t)|^2dx]=1/2π(π/2α)^(1/2)m!!/(4α)^m[∫R uo(x)dx]^2, if∫R uo(x)dx≠0, where 0!!=1,1!!=1 and m!!=1·3…(2m-3)…(2m-1).Moreover lim t→∞[(1+t)^(m+3/2)∫R|uxm(x,t)|^2dx]=1/2π(x/2α)^(1/2)(m+1)!!/(4α)^(m+1)[∫Rρo(x)dx]^2, if the initial function uo(x)=ρo′(x),for some functionρo∈C^1(R)∩L^1(R)and∫Rρo(x)dx≠0.  相似文献   

5.
Approximation to the function |x| plays an important role in approximation theory. This paper studies the approximation to the function xαsgn x, which equals |x| if α = 1. We construct a Newman Type Operator rn(x) and prove max |x|≤1|xαsgn x-rn(x)|~Cn1/4e-π1/2(1/2)αn.  相似文献   

6.
Some integral inequalities for the polar derivative of a polynomial   总被引:1,自引:0,他引:1  
If P(z) is a polynomial of degree n which does not vanish in |z| 1,then it is recently proved by Rather [Jour.Ineq.Pure and Appl.Math.,9 (2008),Issue 4,Art.103] that for every γ 0 and every real or complex number α with |α|≥ 1,{∫02π |D α P(e iθ)| γ dθ}1/γ≤ n(|α| + 1)C γ{∫02π|P(eiθ)| γ dθ}1/γ,C γ ={1/2π∫0 2π|1+eiβ|γdβ}-1/γ,where D α P(z) denotes the polar derivative of P(z) with respect to α.In this paper we prove a result which not only provides a refinement of the above inequality but also gives a result of Aziz and Dawood [J.Approx.Theory,54 (1988),306-313] as a special case.  相似文献   

7.
Let U(λ, μ) denote the class of all normalized analytic functions f in the unit disk |z| < 1 satisfying the condition
$ \frac{{f(z)}} {z} \ne 0and\left| {f'(z)\left( {\frac{z} {{f(z)}}} \right)^{\mu + 1} - 1} \right| < \lambda ,\left| z \right| < 1. $ \frac{{f(z)}} {z} \ne 0and\left| {f'(z)\left( {\frac{z} {{f(z)}}} \right)^{\mu + 1} - 1} \right| < \lambda ,\left| z \right| < 1.   相似文献   

8.
Let R be a prime ring and δ a derivation of R. Divided powers $ D_n ^{\underline{\underline {def.}} } \tfrac{1} {{n!}}\tfrac{{d^n }} {{dx^n }} $ D_n ^{\underline{\underline {def.}} } \tfrac{1} {{n!}}\tfrac{{d^n }} {{dx^n }} of ordinary differentiation d/dx form Hasse-Schmidt higher derivations of the Ore extension (skew polynomial ring) R[x; δ]. They have been used crucially but implicitly in the investigation of R[x; δ]. Our aim is to explore this notion. The following is proved among others: Let Q be the left Martindale quotient ring of R. It is shown that $ S^{\underline{\underline {def.}} } Q[x;\delta ] $ S^{\underline{\underline {def.}} } Q[x;\delta ] is a quasi-injective (R, R)-module and that any (R,R)-bimodule endomorphism of S can be uniquely expressed in the form
$ \theta (f) = \sum\limits_{n = 0}^\infty {\zeta _n D_n (f)} forf \in Q[x;\delta ], $ \theta (f) = \sum\limits_{n = 0}^\infty {\zeta _n D_n (f)} forf \in Q[x;\delta ],   相似文献   

9.
This paper is concerned with a nonlocal hyperbolic system as follows utt = △u + (∫Ωvdx )^p for x∈R^N,t〉0 ,utt = △u + (∫Ωvdx )^q for x∈R^N,t〉0 ,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N, where 1≤ N ≤3, p ≥1, q ≥ 1 and pq 〉 1. Here the initial values are compactly supported and Ω belong to R^N is a bounded open region. The blow-up curve, blow-up rate and profile of the solution are discussed.  相似文献   

10.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

11.
Let J:\mathbbR ? \mathbbRJ:\mathbb{R} \to \mathbb{R} be a nonnegative, smooth compactly supported function such that ò\mathbbR J(r)dr = 1. \int_\mathbb{R} {J(r)dr = 1.} We consider the nonlocal diffusion problem
$ u_t (x,t) = \int_\mathbb{R} {J\left( {\frac{{x - y}} {{u(y,t)}}} \right)dy - u(x,t){\text{ in }}\mathbb{R} \times [0,\infty )} $ u_t (x,t) = \int_\mathbb{R} {J\left( {\frac{{x - y}} {{u(y,t)}}} \right)dy - u(x,t){\text{ in }}\mathbb{R} \times [0,\infty )}   相似文献   

12.
The aim of the paper is to prove that every fL 1([0,1]) is of the form f = , where j n,k is the characteristic function of the interval [k- 1 / 2 n , k / 2 n ) and Σ n=0Σ k=12n |a n,k | is arbitrarily close to ||f|| (Theorem 2). It is also shown that if μ is any probabilistic Borel measure on [0,1], then for any ɛ > 0 there exists a sequence (b n,k ) n≧0 k=1,...,2n of real numbers such that and for each Lipschitz function g: [0,1] → ℝ (Theorem 3).   相似文献   

13.
Abstract  Let Ω be the unit ball centered at the origin in . We study the following problem
By a constructive argument, we prove that for any k = 1, 2, • • •, if ε is small enough, then the above problem has positive a solution uε concentrating at k distinct points which tending to the boundary of Ω as ε goes to 0+.  相似文献   

14.
The celebrated result by Baras and Goldstein (1984) established that the heat equation with the inverse square potential in the unit ball B 1 ⊂ ℝ N , N ≥ 3, u t = Δ u + in B 1 × (0,T), u|∂B 1 = 0, in the supercritical range c > c Hardy = does not have a solution for any nontrivial L 1 initial data u 0(x) ≥ 0 in B 1 (or for a positive measure u 0). More precisely, it was proved that a regular approximation of a possible solution by a sequence {u n (x,t)} of classical solutions corresponding to truncated bounded potentials given by V(x) = ↦ V n (x) = min{, n} (n ≥ 1) diverges; i.e., as n → ∞, u n (x,t) → + ∞ in B 1 × (0, T). Similar features of “nonexistence via approximation” for semilinear heat PDEs were inherent in related results by Brezis-Friedman (1983) and Baras-Cohen (1987). The main goal of this paper is to justify that this nonexistence result has wider nature and remains true without the positivity assumption on data u 0(x) that are assumed to be regular and positive at x = 0. Moreover, nonexistence as the impossibility of regular approximations of solutions is true for a wide class of singular nonlinear parabolic problems as well as for higher order PDEs including, e.g., u t = , and , N > 4. Dedicated to Professor S.I. Pohozaev on the occasion of his 70th birthday  相似文献   

15.
In this paper, let Σ R2n be a symmetric compact convex hypersurface which is ( r, R )- pinched with R/r (5/3)1/2 . Then Σ carries at least two elliptic symmetric closed characteristics; moreover, Σ carries at least E [ n-1/2 ] + E [ n-1/3 ] non-hyperbolic symmetric closed characteristics.  相似文献   

16.
Let $ \mathbb{B} $ \mathbb{B} be the unit ball in ℂ n and let H($ \mathbb{B} $ \mathbb{B} ) be the space of all holomorphic functions on $ \mathbb{B} $ \mathbb{B} . We introduce the following integral-type operator on H($ \mathbb{B} $ \mathbb{B} ):
$ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B}, $ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B},   相似文献   

17.
Normality and quasinormality of zero-free meromorphic functions   总被引:1,自引:0,他引:1  
Let k, K ∈ N and F be a family of zero-free meromorphic functions in a domain D such that for each f ∈ F , f(k)-1 has at most K zeros, ignoring multiplicity. Then F is quasinormal of order at most ν = K k+1 , where ν is equal to the largest integer not exceeding K/k+1 . In particular, if K = k, then F is normal. The results are sharp.  相似文献   

18.
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.  相似文献   

19.
Imaginary powers associated to the Laguerre differential operator $ L_\alpha = - \Delta + |x|^2 + \sum _{i = 1}^d \frac{1} {{x_i^2 }}(\alpha _i^2 - 1/4) $ L_\alpha = - \Delta + |x|^2 + \sum _{i = 1}^d \frac{1} {{x_i^2 }}(\alpha _i^2 - 1/4) are investigated. It is proved that for every multi-index α = (α1,...α d ) such that α i ≧ −1/2, α i ∉ (−1/2, 1/2), the imaginary powers $ \mathcal{L}_\alpha ^{ - i\gamma } ,\gamma \in \mathbb{R} $ \mathcal{L}_\alpha ^{ - i\gamma } ,\gamma \in \mathbb{R} , of a self-adjoint extension of L α, are Calderón-Zygmund operators. Consequently, mapping properties of $ \mathcal{L}_\alpha ^{ - i\gamma } $ \mathcal{L}_\alpha ^{ - i\gamma } follow by the general theory.  相似文献   

20.
We describe the structure of three dimensional sets of lattice points, having a small doubling property. Let be a finite subset of ℤ3 such that dim = 3. If and , then lies on three parallel lines. Moreover, for every three dimensional finite set that lies on three parallel lines, if , then is contained in three arithmetic progressions with the same common difference, having together no more than terms. These best possible results confirm a recent conjecture of Freiman and cannot be sharpened by reducing the quantity υ or by increasing the upper bounds for .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号