首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tian  Naishuo  Zhang  Zhe George 《Queueing Systems》2002,40(3):283-294
We study a discrete-time GI/Geo/1 queue with server vacations. In this queueing system, the server takes vacations when the system does not have any waiting customers at a service completion instant or a vacation completion instant. This type of discrete-time queueing model has potential applications in computer or telecommunication network systems. Using matrix-geometric method, we obtain the explicit expressions for the stationary distributions of queue length and waiting time and demonstrate the conditional stochastic decomposition property of the queue length and waiting time in this system.  相似文献   

2.
Zhang  Zhe G.  Tian  Naishuo 《Queueing Systems》2003,45(2):161-175
We study a multi-server M/M/c type queue with a single vacation policy for some idle servers. In this queueing system, if at a service completion instant, any d (d c) servers become idle, these d servers will take one and only one vacation together. During the vacation of d servers, the other cd servers do not take vacation even if they are idle. Using a quasi-birth-and-death process and the matrix analytic method, we obtain the stationary distribution of the system. Conditional stochastic decomposition properties have been established for the waiting time and the queue length given that all servers are busy.  相似文献   

3.
We consider finite buffer single server GI/M/1 queue with exhaustive service discipline and multiple working vacations. Service times during a service period, service times during a vacation period and vacation times are exponentially distributed random variables. System size distributions at pre-arrival and arbitrary epoch with some important performance measures such as, probability of blocking, mean waiting time in the system etc. have been obtained. The model has potential application in the area of communication network, computer systems etc. where a single channel is allotted for more than one source.  相似文献   

4.
In this paper, we propose approximations to compute the steady-state performance measures of the M/GI/N+GI queue receiving Poisson arrivals with N identical servers, and general service and abandonment-time distributions. The approximations are based on scaling a single server M/GI/1+GI queue. For problems involving deterministic and exponential abandon times distributions, we suggest a practical way to compute the waiting time distributions and their moments using the Laplace transform of the workload density function. Our first contribution is numerically computing the workload density function in the M/GI/1+GI queue when the abandon times follow general distributions different from the deterministic and exponential distributions. Then we compute the waiting time distributions and their moments. Next, we scale-up the M/GI/1+GI queue giving rise to our approximations to capture the behavior of the multi-server system. We conduct extensive numerical experiments to test the speed and performance of the approximations, which prove the accuracy of their predictions.   相似文献   

5.
考虑了一个带有部分工作休假和休假中断的多服务台M/M/c排队.在休假期,d(d相似文献   

6.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a modified vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Further, we derive some important characteristics including the expected length of the busy period and idle period. This shows that the results generalize those of the multiple vacation policy and the single vacation policy M[x]/G/1 queueing system. Finally, a cost model is developed to determine the optimum of J at a minimum cost. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we study an M/M/c queue with a three threshold vacation policy denoted by (e, d, N). With such a policy, the servers keep serving the customers until the number of idle servers reaches d and then e of d servers start taking a vacation together. These e servers keep taking vacations until the number of customers in the system is at least N at a vacation completion instant, then the e servers return to serve the queue again. Using the matrix analytic method, we obtain the stationary performance measures and prove the conditional stochastic decomposition properties for the waiting time and queue length. This model is a generalization of previous multi-server vacation models and offers a useful performance evaluation and system design tool in multi-task server queueing systems.  相似文献   

8.
《随机分析与应用》2013,31(5):901-909
This paper deals with the steady state behavior of an M/G/1 queuing system with two different vacation times under multiple vacation policy, where length of the first vacation is different from the second and subsequent vacations. In this paper, attempts have been made to obtain the additional queue size distribution, distribution of additional delay and waiting time distribution of this model. Also, we obtain some important measures of this model.  相似文献   

9.
In this paper, we consider GI/M/c queues with two classes of vacation mechanisms: Station vacation and server vacation. In the first one, all the servers take vacation simultaneously whenever the system becomes empty, and they also return to the system at the same time, i.e., station vacation is a group vacation for all servers. This phenomenon occurs in practice, for example, when the system consists of a set of machines monitored by a single operator, or the system consists of inseparable interconnected parallel machines. In such situations the whole station has to be treated as a single entity for vacation when the system is utilized for a secondary task. For the second class of vacation mechanisms, each server takes its own vacation whenever it complexes a service and finds no customers waiting in the queue, which occurs, for instance in the post office, when each server is a relatively independent working unit, and can itself be used for other purposes. For both models, we derive steady state probabilities that have matrix geometric form, and develop computational algorithms to obtain numerical solutions. We also analyze and make comparisons of these models based on numerical observations.  相似文献   

10.
K. Sikdar  U. C. Gupta 《TOP》2005,13(1):75-103
We consider a finite buffer batch service queueing system with multiple vacations wherein the input process is Markovian arrival process (MAP). The server leaves for a vacation as soon as the system empties and is allowed to take repeated (multiple) vacations. The service- and vacation- times are arbitrarily distributed. We obtain the queue length distributions at service completion, vacation termination, departure, arbitrary and pre-arrival epochs. Finally, some performance measures such as loss probability, average queue lengths are discussed. Computational procedure has been given when the service- and vacation- time distributions are of phase type (PH-distribution).  相似文献   

11.
Single server M/G/1-queues with an infinite buffer are studied; these permit inclusion of server vacations and setup times. A service discipline determines the numbers of customers served in one cycle, that is, the time span between two vacation endings. Six service disciplines are investigated: the gated, limited, binomial, exhaustive, decrementing, and Bernoulli service disciplines. The performance of the system depends on three essential measures: the customer waiting time, the queue length, and the cycle duration. For each of the six service disciplines the distribution as well as the first and second moment of these three performance measures are computed. The results permit a detailed discussion of how the expected value of the performance measures depends on the arrival rate, the customer service time, the vacation time, and the setup time. Moreover, the six service disciplines are compared with respect to the first moments of the performance measures.  相似文献   

12.
We study a GI/M/1 queue with an N threshold policy. In this system, the server stops attending the queue when the system becomes empty and resumes serving the queue when the number of customers reaches a threshold value N. Using the embeded Markov chain method, we obtain the stationary distributions of queue length and waiting time and prove the stochastic decomposition properties.  相似文献   

13.
异步休假M/M/C排队的稳态理论   总被引:2,自引:0,他引:2  
本文研究异步休假的M/M/c排队,对多重休假和单重休假两类模型给出了统一的处理,得到了稳态队长,等等时间分布,提出了条件的随机分解的概念,证明服务台全忙条件下系统中排队顾客数和等待时间均可分解为两个独立随机变量之和,其中一个是经典无休假系统中对应的条件随机变量。  相似文献   

14.
Many models for customers impatience in queueing systems have been studied in the past; the source of impatience has always been taken to be either a long wait already experienced at a queue, or a long wait anticipated by a customer upon arrival. In this paper we consider systems with servers vacations where customers’ impatience is due to an absentee of servers upon arrival. Such a model, representing frequent behavior by waiting customers in service systems, has never been treated before in the literature. We present a comprehensive analysis of the single-server, M/M/1 and M/G/1 queues, as well as of the multi-server M/M/c queue, for both the multiple and the single-vacation cases, and obtain various closed-form results. In particular, we show that the proportion of customer abandonments under the single-vacation regime is smaller than that under the multiple-vacation discipline. This work was supported by the Euro-Ngi network of excellence.  相似文献   

15.
Brandt  Andreas  Brandt  Manfred 《Queueing Systems》2002,41(1-2):73-94
In this paper for the M(n)/M(n)/s+GI system, i.e. for a s-server queueing system where the calls in the queue may leave the system due to impatience, we present new asymptotic results for the intensities of calls leaving the system due to impatience and a Markovian system approximation where these results are applied. Furthermore, we present a new proof for the formulae of the conditional density of the virtual waiting time distributions, recently given by Movaghar for the less general M(n)/M/s+GI system. Also we obtain new explicit expressions for refined virtual waiting time characteristics as a byproduct.  相似文献   

16.
Zhang  Zhe George  Tian  Naishuo 《Queueing Systems》2001,38(4):419-429
This paper treats the discrete time Geometric/G/1 system with vacations. In this system, after serving all customers in the system, the server will take a random maximum number of vacations before returning to the service mode. The stochastic decomposition property of steady-state queue length and waiting time has been proven. The busy period, vacation mode period, and service mode period distributions are also derived. Several common vacation policies are special cases of the vacation policy presented in this study.  相似文献   

17.
M/G/1 queues with server vacations have been studied extensively over the last two decades. Recent surveys by Boxma [3], Doshi [5] and Teghem [14] provide extensive summary of literature on this subject. More recently, Shanthikumar [11] has generalized some of the results toM/G/1 type queues in which the arrival pattern during the vacations may be different from that during the time the server is actually working. In particular, the queue length at the departure epoch is shown to decompose into two independent random variables, one of which is the queue length at the departure epoch (arrival epoch, steady state) in the correspondingM/G/1 queue without vacations. Such generalizations are important in the analysis of situations involving reneging, balking and finite buffer cyclic server queues. In this paper we consider models similar to the one in Shanthikumar [11] but use the work in the system as the starting point of our investigation. We analyze the busy and idle periods separately and get conditional distributions of work in the system, queue length and, in some cases, waiting time. We then remove the conditioning to get the steady state distributions. Besides deriving the new steady state results and conditional waiting time and queue length distributions, we demonstrate that the results of Boxma and Groenendijk [2] follow as special cases. We also provide an alternative approach to deriving Shanthikumar's [11] results for queue length at departure epochs.  相似文献   

18.
This paper studies the operating characteristics of the variant of an M[x]/G/1 vacation queue with startup and closedown times. After all the customers are served in the system exhaustively, the server shuts down (deactivates) by a closedown time, and then takes at most J vacations of constant time length T repeatedly until at least one customer is found waiting in the queue upon returning from a vacation. If at least one customer is present in the system when the server returns from a vacation, then the server reactivates and requires a startup time before providing the service. On the other hand, if no customers arrive by the end of the J th vacation, the server remains dormant in the system until at least one customer arrives. We will call the vacation policy modified T vacation policy. We derive the steady‐state probability distribution of the system size and the queue waiting time. Other system characteristics are also investigated. The long‐run average cost function per unit time is developed to determine the suitable thresholds of T and J that yield a minimum cost. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The paper investigates the queueing process in stochastic systems with bulk input, batch state dependent service, server vacations, and three post-vacation disciplines. The policy of leaving and entering busy periods is hysteretic, meaning that, initially, the server leaves the system on multiple vacation trips whenever the queue falls below r (⩾1), and resumes service when during his absence the system replenishes to N or more customers upon one of his returns. During his vacation trips, the server can be called off on emergency, limiting his trips by a specified random variable (thereby encompassing several classes of vacation queues, such as ones with multiple and single vacations). If by then the queue has not reached another fixed threshold M (⩽ N), the server enters a so-called “post-vacation period” characterized by three different disciplines: waiting, or leaving on multiple vacation trips with or without emergency. For all three disciplines, the probability generating functions of the discrete and continuous time parameter queueing processes in the steady state are obtained in a closed analytic form. The author uses a semi-regenerative approach and enhances fluctuation techniques (from his previous studies) preceding the analysis of queueing systems. Various examples demonstrate and discuss the results obtained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a variant vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. If the server is busy or on vacation, an arriving batch balks (refuses to join) the system with probability 1 − b. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Finally, important system characteristics are derived along with some numerical illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号